當(dāng)前位置:大學(xué)路 > 教育資訊 >正文

初三數(shù)理化,一??记霸撊绾翁岱郑浚ǜ狡胀訁^(qū)一??荚嚲恚?/h1> 更新:2020年05月20日 21:18 大學(xué)路
高考是一個(gè)是一場(chǎng)千軍萬(wàn)馬過(guò)獨(dú)木橋的戰(zhàn)役。面對(duì)高考,考生總是有很多困惑,什么時(shí)候開(kāi)始報(bào)名?高考體檢對(duì)報(bào)考專(zhuān)業(yè)有什么影響?什么時(shí)候填報(bào)志愿?怎么填報(bào)志愿?等等,為了幫助考生解惑,大學(xué)路整理了初三數(shù)理化,一模考前該如何提分?(附普陀區(qū)一模考試卷)相關(guān)信息,供考生參考,一起來(lái)看一下吧初三數(shù)理化,一??记霸撊绾翁岱??(附普陀區(qū)一??荚嚲恚?/></p><p><span style="font-size:15px">初三一模對(duì)于所有同學(xué)來(lái)說(shuō),是至關(guān)重要的,根據(jù)一??嫉某煽?jī),同學(xué)可以獲得自己的區(qū)排名,對(duì)于5月的填報(bào)志愿會(huì)有一個(gè)指導(dǎo)性作用。</span></p>

<p style="text-align:start">?</p>

<p style="text-align:start"><span style="font-size:15px">另外,四校八校的預(yù)錄取會(huì)在2月陸續(xù)拉開(kāi)序幕,在二??荚嚽皶?huì)有一部分學(xué)生提前簽約,所以過(guò)硬的一模成績(jī)便成了名校預(yù)錄取的敲門(mén)磚。那一模前,應(yīng)該如何復(fù)習(xí)呢?<span style="color:rgb(255, 76, 65); font-size:15px"><strong>(PS:最下方附今年普陀區(qū)五科一模真題試卷+解析)</strong></span></span></p>

<p style="text-align:start">?</p>

<p style="text-align:center"><strong><span style="color:rgb(63, 63, 63); font-size:12px">▼▼▼</span></strong></p>

<p style="text-align:center"><span style="background-color:rgb(0, 0, 0); color:rgb(255, 255, 255)"><strong>?想要拿高分,數(shù)學(xué)應(yīng)該注意什么?</strong></span></p>

<p style="text-align:start"><span style="font-size:15px">一??荚嚳疾斐龍A以外的初中全部?jī)?nèi)容(有個(gè)別區(qū)縣會(huì)考察圓的知識(shí)),考試范圍不超過(guò)中考考綱,但是難度會(huì)在中考之上,特別是兩道壓軸題,<strong>二次函數(shù)和相似</strong>是數(shù)學(xué)高分的關(guān)鍵。如果之前沒(méi)有接觸過(guò)相關(guān)的一模試卷的話,當(dāng)?shù)谝淮蚊媾R一??荚嚂r(shí)可能會(huì)措手不及,不能全面的展示自己的實(shí)力。</span></p>

<p style="text-align:start">?</p>

<p style="text-align:start"><span style="font-size:15px">試題中的24、25題是對(duì)解決綜合問(wèn)題能力的考查。這兩道綜合題要做到“大題小做”,做到<strong>會(huì)把大題分解成若干小題,步步為營(yíng),各個(gè)擊破</strong>,在保證時(shí)間充裕的前提下,先解決前兩小問(wèn),最后的時(shí)間再去思考第三問(wèn)。</span></p>

<p style="text-align:start">?</p>

<p style="text-align:start"><span style="font-size:15px">那壓軸題到底考什么呢?</span></p>

<p style="text-align:start">?</p>

<p style="text-align:start"><span style="font-size:15px">24題應(yīng)是<strong>以函數(shù)為主的綜合題</strong>。</span></p>

<p style="text-align:start">?</p>

<p style="text-align:start"><span style="font-size:15px">此題的難點(diǎn)是第三問(wèn)中開(kāi)放或探究問(wèn)題的解決。解決此類(lèi)問(wèn)題要注重運(yùn)用待定系數(shù)法及數(shù)形結(jié)合的思想方法。同時(shí)要善于分解,并懂得如何解決如:</span></p>

<p style="text-align:start">?</p>

<p style="text-align:start"><span style="font-size:15px">(1)<strong>面積問(wèn)題</strong>:用割補(bǔ)法解決。</span></p>

<p style="text-align:start"><span style="font-size:15px">(2)<strong>邊、角問(wèn)題</strong>:相似或三角解決。</span></p>

<p style="text-align:start"><span style="font-size:15px">(3)<strong>相似問(wèn)題</strong>:按角分類(lèi),邊成比例或三角解決。</span></p>

<p style="text-align:start"><span style="font-size:15px">(4)<strong>等腰三角形</strong>:按邊分類(lèi),勾股、全等、相似解決。</span></p>

<p style="text-align:start"><span style="font-size:15px">(5)<strong>直角問(wèn)題</strong>:按角分類(lèi),全等、相似或三角解決。</span></p>

<p style="text-align:start"><span style="font-size:15px">(6)<strong>平行四邊形問(wèn)題</strong>:按性質(zhì)分類(lèi),待定系數(shù)法解決。</span></p>

<p style="text-align:start"><span style="font-size:15px">(7)<strong>菱形、矩形、正方形,三角、全等、相似</strong>解決。</span></p>

<p style="text-align:start">?</p>

<p style="text-align:start"><span style="font-size:15px">25題應(yīng)是<strong>以幾何為主的綜合</strong>。</span></p>

<p style="text-align:start">?</p>

<p style="text-align:start"><span style="font-size:15px">此題解決的難點(diǎn)是如何運(yùn)用已有的知識(shí)解決圖形變換中量的計(jì)算問(wèn)題。突破此難點(diǎn)應(yīng)注重分類(lèi):</span></p>

<p style="text-align:start">?</p>

<p style="text-align:start"><span style="font-size:15px">(1)<strong>按角度旋轉(zhuǎn)可分為</strong>:含有特殊角、倍角、補(bǔ)角、余角。</span></p>

<p style="text-align:start"><span style="font-size:15px">(2)<strong>按幾何圖形可分為特殊三角形</strong>;如:等邊三角形、等腰三角形、直角三角形、等腰直角三角形;特殊四邊形;組合圖形。</span></p>

<p style="text-align:start"><span style="font-size:15px">(3)注重<strong>全等、相似、三角函數(shù)、方程</strong>等知識(shí)的靈活運(yùn)用。</span></p>

<p style="text-align:start"><span style="font-size:15px">(4)<strong>要掌握?qǐng)D形中線段長(zhǎng)的計(jì)算方法</strong>:勾股、相似、三角、方程等。</span></p>

<p style="text-align:start"><span style="font-size:15px">(5)要熟練掌握<strong>幾何中的基本圖形</strong>。</span></p>

<p style="text-align:start"><span style="font-size:15px">(6)注重此題<strong>最后兩問(wèn)之間的內(nèi)在聯(lián)系</strong>,尤其應(yīng)明確兩問(wèn)之間是“串聯(lián)”還是“并聯(lián)”。</span></p>

<p style="text-align:start">?</p>

<p style="text-align:center"><strong><span style="color:rgb(63, 63, 63); font-size:12px">▼▼▼</span></strong></p>

<p style="text-align:center"><span style="background-color:rgb(0, 0, 0); color:rgb(255, 255, 255)"><strong>?一模物理考什么?</strong></span></p>

<p style="text-align:start"><span style="font-size:15px">就物理而言,一模考的考點(diǎn)內(nèi)容包括壓強(qiáng)、浮力以及電學(xué)。</span></p>

<p style="text-align:start">?</p>

<p style="text-align:start"><span style="font-size:15px">其中的重難點(diǎn),即壓軸題主要為固液壓強(qiáng)的變化、液體壓強(qiáng)與浮力的綜合計(jì)算題、動(dòng)態(tài)電路、電路故障、電學(xué)計(jì)算題以及電學(xué)的兩個(gè)重要實(shí)驗(yàn):伏安法測(cè)電阻和測(cè)小燈泡電功率。</span></p>

<p style="text-align:start">?</p>

<p style="text-align:start"><span style="font-size:15px">在這里,重點(diǎn)闡述動(dòng)態(tài)電路分析常用技巧。</span></p>

<p style="text-align:start">?</p>

<p style="text-align:start"><strong><span style="font-size:15px">一、開(kāi)關(guān)的斷開(kāi)與閉合引起電路的動(dòng)態(tài)變化</span></strong></p>

<p style="text-align:start"><strong><span style="font-size:15px">解題思路:</span></strong></p>

<p style="text-align:start"><span style="font-size:15px"><span style="font-size:15px">(1)</span>分析開(kāi)關(guān)斷開(kāi)閉合時(shí)電路連接類(lèi)型及各個(gè)電流表、電壓表所測(cè)對(duì)象;測(cè)電源電壓的電壓表示數(shù)不會(huì)發(fā)生改變。</span></p>

<p style="text-align:start">?</p>

<p style="text-align:start"><span style="font-size:15px"><span style="font-size:15px">(2)</span>電路中雙電阻串聯(lián)變單電阻,則總電阻變小,電流變大,被短路的電阻電壓電流都為0,另一電阻電壓電流都變大,且電壓為電源電壓。</span></p>

<p style="text-align:start">?</p>

<p style="text-align:start"><span style="font-size:15px"><span style="font-size:15px">(3)</span>電路中雙電阻并聯(lián)變單電阻,則總電阻變大,總電流變小,被斷路的電阻電壓電流都為0,另一電阻電壓電流都不變,總電流變小。</span></p>

<p style="text-align:start">?</p>

<p style="text-align:start"><strong><span style="font-size:15px">例:(2017年松江區(qū)物理一模第8題)</span></strong></p>

<p style="text-align:start"><span style="font-size:15px">在圖所示的電路中,電源電壓不變,當(dāng)電鍵S由閉合到斷開(kāi)時(shí),電壓表</span><span style="background-color:rgb(255, 255, 255); color:rgb(62, 62, 62); font-family:hiragino sans gb,microsoft yahei,arial,sans-serif; font-size:15px">( ?。?/span></p>

<p style="text-align:start"><img src="*gQAiEQiLF++HPPmzYO/vz/bVWAP4uiVVSuXEQACQOPGhtLFi3lERKTRaCzmyc/PpxEjRhAAevnll+n7779nuxqswQlZL8yeNYN4AEm9xZS2cwtVVT6wOm9FRQWlpqYSAHJxcaHMzEy2q8MKnJD1wKbUlSQESDZCQtlZGf2+T2pqKnl6epJAIKCbN2+yXS2HwwmZBSqK7xAA8hEL6cCeXS98v61btxIAio6OpvLycrar51A4ITNDS309LU2eTwBo55YNNrlnY2MjzZ9vuOfKlSvZrqJD4YTMDIczMwkARYaNosq7t2x23wcPHhAAiomJoeLiYrar6TC4GX8zXMjLAwCs2/AZck+exDuT/h0jh3th5HAvbPvrRjQ/e8ak/WTtWgT/99cwfvJ/4NiFSz3eVyaTISkpCUVFRfjmm2/YrqbjYFvKnY2qyiqKHDeODE2joxUL5jPTFwAoMjycKopLmPSysDDm2sotW3u9f4c2k8lkbFfVYXBC1o203btpVKCMAry9mXOJExUEgEYIXKiyxPgzV6/R0KzkhTQhfqrVz+gQysFGY2Oj+fr21AhD+UiIjSVqaSIioryjR0nKM5zPOXDAqK3+UVJCuw8fpqy8i1b/GGzXzZ5HfHy8SX17XCCPiIhAc3MzPDw84OLigtbWVra/7jZDD0DJ50PI50PYbikw3NMTuTk5AIDAgABAJAYATJo6FSl/WYk/pqbi2uUrmDLzXcZ+5eCRQ5AFBWHGpCirn+3i4gKdTgepVAqJRAIPDw/w+XxotVpotVq4urrC1dUVer0eWq0WAMDnO3/3uaCgALdu3TK9YOlNEwgEbGtfVpg3dy75iF+m1MVLjc5X3rpFAGhsQABdv9i5RJSUvICyzp42SltYWEi7d++mkpISs88QCAQkEAgsfl4GKgDIz8/P5LzF10Oj0bD9YrCCu4cHROKXoGppBvRa5rw0IAChPhLcrKjAlzt2AACKbt/Gb975DSIjIo3uMWvWLCxYsADvvvuu2WdoNBpoNBro9Xq2q+sYLEnkYOyYWsOmTZtILBaTpEvHn0GnY9rm6OGjNG7cOLpz965JsuvXr9P06dNJIBCYXUQfrO3bZ002VJkzZw4iIyNRp1SioaHB+CKfD4lEApFIhG9Pfgs+nw+dGY3/6quvIjw8HHK5HK6uxt3ee/fuAQBCQkLYrqrD4ISsGz4+PggNDQUAlJaWGl3T6/VY*QJRCIRMjIyEBsbCx8fH5N7NDQ0QK1WY/jw4SbX1qxZA4FAgMmTJ7NdVYfBCZkZPDw8gPbRUtd+E5/Px8yZM6FUKgEAv/vd7yCVSk3yNzc3o66uDtXV1czoEADUajWysrIgk8mQkJDAdjUdBidkZkhISMDYsWPxxz/+EdnZ2UbXZDIZdu3ahVmzZkEul5vNL5VKERgYCG9vbxQVFTHnL1++DACYNm0aoqKsn/IY8FjqwA3GjmlfOHXqFAGg8PBwysvLM7rW1NREVVVVFvPOmzevc4Bw9CgREaWlpREA8vb2puvXr7NdPbtgqePvVN5Ker0et2/fxj//+U9UV1ejtbUVrq6uEIvF8PHxwZgxYyxqD1sTHx+PmJgYXLhwAevXr4dYLMb48eMBAGKxGGKx2GLewMBAZsLVz88PX3/9NVavXg0ASE9Px2uvvcZ2UzsWSxLpaE1WUFBAq1evpnHti9PmjujoaEpPT6eamhqHlS*JoZ5dkFBQZ/yNjU10c2bN5ny79mzx6Ft6mgsaTLWhSw/P5+kUqmRMC1cuJAyMjIoIyODNm/eTEuXLqWIiAiTNE1NTXYv39OnTykxMZF5bkpKCrW2tvaaT6lU0ooVK5h8W7f2bqEx0LEkZGZd4ng8XoeWs6sW3bhxIz7++GOIRCIoFApMmjQJEydOxK9+9SsIhULw+Xxm/a6urg737t1Dbm4uMjIyUFdXh7Fjx2LJkiX47W9/a9dyPnv2DIcOHcLatWtRVVUFAAgICMDs2bPh4eEBX19fuLm5oby8HMXFxdi/fz+zYhIXF4eFCxdiypQpdi2jM8Dj8eDn54dHjx4ZX7AkkfbWZBs2bKARI0aQUCikLVu29MnuPTs7m5KSkgzmNyNGUEZG/508+kJOTg5NnTqVvL29SSQSUWhoKAUGBpJcLieZTEYSiYTkcjnxeDxycXGhpKQkevr0qUPK5gz0+XPJ4/HsVpjr168zi/Bnz57t931mz55NAEgoFPboA2lrWltb6cSJE5SUlESBgYEkFovJ09OT5HI5paSkUH5+vsPK4kz0WciEQqFdClJTU0MASCQSUXp6utk0felrLV26lADQ6tWrHSpoHKY4hSb76aefaNGiRYxQ2IKKigrm0znYR2/OjlOMLj*JCUSiUVbq/7Q8fmNj4/vcZKUw770eTK2Y4RpSy5cuAAAyMnJgVqtRm5uL*rq+Ht7Y0333zTKNxSUVER*urIRaLERoaCi8vL4v3DQ4OhlQqxaVLl3Do0CEsWbKEpfEVh1ksSaRYLLa5pEdHRzMaMiAgwGjeSyQS0cWLnXbyXa+NHTu2x/s2NTVRSUkJASCFQsHGS8zRH3uy5uZmmwrz3r17UVZWBk9PTwDA2bNnIRKJmOtZWVlGi8ZdF6Y7NKAlxGIxfH19AQDl5eVsvKscPeAwK4yrV69Cq9Vi2rRpAICgoCBmPQ+ASfyuN954A5s2bcLmzZvh7u7e6/071hJVKpUj24/DCnpcIF+zZg2jIaxFq9Wiuroaw4YNg7u7OwQCAVQqFdLS0oD2xWO9Xg8+n485c+agoKAA2dnZuHHjBsLDw5n7XL58GePHj0dERESfnt/Y2IiNGzdCKBRCJBIxlql6vZ55blfPn47rbW1tAAClUonIyEgoFAq2f5vBg6Vvq72O5ORko2fl5+cTAJo+fbrRwndcXBylpaX1qU8gFAptVk6OvtMvU5+89pgQ6KPfn6urK54/fw6NRgOBQAA+n4/3338fFRUVJh46gYGBAIATJ05AoVDgT3/6E6qrqxETE8OY1qBd0/ziF79AZWVlx8th8twOv9D09HSIxWK4u7tDKBQC7ZpMp9MB7X6PHeuiHZpMrVZDKBQiOjqa7fd+8GFJIm39Nm/fvp0CAgIoJCTE5NqWLVsIAIWFhVFhYSEtX77cxKwmKyuL5s+fT97e3gSA0tLSTGb4bTEq5jRZ/2HdWykqKgru7u64e/euybWOea379+/jyJEjOHfuHEaOHGmUhs/nY/369bhw4QJiY2Nx7949VFdXM9efPHkCAPD29mbzneUwg8MsY8PCwnq0Jk1MTMS1a9dw+fJl+Pr6mjgXJyYmAu1C9Nlnn0Gr1TKCqNfr8fbbbwPtzh0czoVDHUkiIw2e1tu2bTO5lpCQgIqKChQWFiI5OZnpq3VHpVLh2rVrRibMSqUSRUVFiIiIQFJSkuNbkaNHHCpkc+bMgUKhwEcffYRjx44ZXZs5cyaSkpIQGBho0cCvtrYWx44dM/pMqtVqfP755wCAmJgYjB49mp2W5LCMpQ6cvTq/HV5ACoXCJBJ0ZWUlFRYWms139+5dxt6ex+PR6dOnSalU0s6dO4nH45FMJrOJFxDX8e8/TmGFQUSk0+lo4sSJBICSkpKszhcXF2c0j+Xn50cLFy5k1kDv3Lljs4bihKx/OI2QdSCTyQiA2SkNS1RWVlJJSQlVVVXR6dOnmXIuX77cpg3FCVn/cDohu3nzpokXkDX28Pn5+RQfH89UaN26dTb1WuKErP84pbfSo0eP8MknnyAzMxNisRhRUVEIDw+HUCiETCZjIhCqVCpmXuz27dsoKCgAj8fDV199hQ8++MCmZXJU3QcjTuet1JWcnBwKCQkxWT/s8Prpfn727Nl287nkNFn/cUpN1p26ujrk5+cjLy8PZWVleP78Ofh8Pjw8PJCQkICgoCD4+/vbdcNSNjXZyZMncebMGTx58gTBwcFQKBTw8/NDcHDwgIgZ69SarDstLS1UU1NDlZWVVFFRQRUVFQ59Gx1V9/LycmYrnI5DIpEwGpzH4zHn4+LinH47wwGhyZwBR9T90aNHOHbsGLKzs3Hr1i00NjaCx+NhzJgxmDJlCmpra9Hc3AyVSoXS0lJGM7zyyisIDQ3FmjVrEBYWxnZTmW27AaPJ2MQRde8aWiouLs6q7QmXLVtmlMcZw0853RSGs2LvusfGxhIAksvl/drE68CBA4xJ04t439sDTsisxF511+l0jN1cRESExeUza1i1ahUBIB8fH5ZbyxhOyKzEXnXPyMggABQQEGASubE/JCQkMGbrfaG8vJz8/Pyovr7e5nXkhMxK7FH3yspKJr6aNdGLKisre42BVlVVxawB96V/tnPnTgJAJ06csEvbcXH8WeLjjz9GQUEB3nvvPYt2cl358MMPsaN91xNL+Pr6Mqsda9asYSyDe6PDctihO85YkkgXFxebS/pAwB6aTCAQEAB*f+pl5Qa2rTZ0G+ThYb3et+flPWUOOs9AkBZhw9bVZbso1ntO6pk2aXt+qTJhsy+P3ZGC0Cr1UAk4EHk0fNKRYNKhb179wEAyn68j5OXrvWYXuLlgYTfGPYD6NjppDf4Zv6yNw6Nfl337BkOtVvEPtdrAfAZlzQ+AAH04OsBV73esFmgHuDrDNsG6gV8wMqlFb1ej9bWVri7u6OhoQEqlQq+vr6YN2+eI6sLADiTew4eHi/jl6ODem+f2jqUlZUZ/iE1duzYgSlR+3vMExpqsAS+f+++VeVpbjF42Lt0a8szZ87g8ePHCA0Nxeuvv27bRrCk9l5++WWbq9OY9jkito6cnByrVL6tPpcaIoqNm0ouLi40f97sXlLrKCsrk2TyEIqJn9FjOXRdn9G+qZhMJrfKcHPLOsP0x6kc446/LRyb++zc29jYaFtp7kJGVhb+TSqFVq8HsymMXg9X6MDXAQK9QbPx9Vrw2zdAbeVbp8lcXFyAdkdflUoFvV6Pffv24dy5c0Zb0DgCVwAi0TD8/Oevwt9vZI9p/37uDA5+cwB/y0iH9yu++I/SUlSV3sGX+w5h4dyZRmm7tsKTJ7UAgPAx4SZuhObwDTDEHFGpbBtQp0d6epuFQqHRIi2Px+v9AMgFIAF4JHIRkFBgCB3g6enJ2tRIeno68+wO06GuZTan9ay*5nDRexJEIoJPGMTpaWLF/ZYxqRZhnkvgVBklE8aGELKphaL+ZT1jUbpOwYZAEjgAhKLBOQneZnEAh6JhZ11zeq2zXXXe3h6epJAIOhz3fsVpqD7dtDWLhrrAOhA0Og0hn8A1NfXO+7N6YZAIOgsW3uogt7q0t8Fcl2z+XrW/uuZxTyPH5WhouIxAEDTqja6Vv3wLq5cvYopkyeZzevhYRzxqOvUhEYHaNQaNKtNpyu6Duy6hwmz9W/V4/enfbLWZsfU6dNtWvi+kpqaavM69XZkZh5AQEAA1GrL+7dnZn6D2NhYVFVVMfmqapSIm2oYOe7dm4HqBrXZvB1dgMTEWVaV52jmHgCAStUpSN2drnU6Xb/q2i8hszVqteGN0cOx0yMdI9igoN5HeLbGw8MdFRUVOH/mjMU0P/zwA5T19UbbGvr6eGHRh8kAgOwD+3Dw4EELeW8DAPz8eu+PAYBgmCHw4PDhlqdTbG0g6dApjI7Cu/BcHPlYhq6RHR1Fh6NyY3MztNo2uLq6GV2f9vZbyMk1CGBbmxZfffUVAKC6thZf7uj0tF+a/AGCg4MQF9W533lt3TNs3LgRAIxiu/WM4Tdw5DSoQzVZIssbibJl6NexgeqaNWtNrum6/ARdR7/atjb4+HTu/DsqLBxtrW1GeS9cuIQT2UegmBiDN958w7rCtEuXQyfbLY0uh+qykj34/vvvKTw8nACQUqm02X3fm20wfsy7aP0OKCeyMswuK9lznszpFsg7+m2DCYVCgekzZgAAPvzDRyh7+PiF7/n+B39AZsZe+Ej9MKnLJ7Q3WtsMA5DuM/4tLS2oqamxi9m5U22qCgAikdgGd3E+fv/736O6Wondu7ahUd2GrVs/h9y/b/F4O/hk7V+xb/eX8PSW4OzZ033Ky3czRJ5UPmswOi8SiezWZ3UqIfvx9g0c+a9vcftOKQBXuArdEPrLcLybNBdy/94jYDszvlIpPvtsA7678Hec//s5fLT0T1i2bAkmvT7e6nuUPq7G/oxvsP7TVZBIA/CXlD8jPKxvUYxc2gceDl39sPRtZaNPtnz5YrOz77NmL6bBtDfXOIVh0wyJn4wuFv6Dauobqb6xkVpazM/st2g0lPNdHkUza5o8OnA4u1/PPtzeJ8u0w/aNfbaMZavjv2XLZgJACxen0J7MUzQ2cjoBoJIS6/fDdHbKa+pp0YpVRi9SdNxUKigspJLiu3S94CIV5J2inKx0Slm8wChd2AQFVb7A9th7dm0lAHT29Cmb12vACNmBTMObdvZiIWmIaMXq7QYhe+A4B19H0KjRUc53Fyl5WQqNGhtBApGnWS3uApBfoIzem59Mew4cppt3H7zQc1sbf6KlyfPsUqd+rV06GtWzJ6iurUWgbBTCRgfj7v3HuNduJyUUOlVRXxh3Vz6mTI7ClMlRuHTtB5w88S0K/+9lNCirgbZWCPjAcC9PyORyKOL/E5NiYyH1ePF+qZu7BJ9/tcehdXWSX+4ZAC/c+OEGTp48CZFoGM6fz8WRY2dw6coNzF20CsOH+wDt4TvPnj2LoKAgBAcHs11wmxA1fgyixo9huxj2w5LaY+NzOX/eLJPPxaIVm4zSTJ06lbmWmprq8DJyWKbPk7EdJjGOQq9Xo/ZfBkPJuPh4AEBo2DgsSe4MmX7t2jUoFAosX74caLdrv3/fOrNjDvZwks8lcOXKDSiVKoSFhWH/3/6GV155BVIfD7So/gXAYJ0gl8vh7+8PqVSKJ0+eQC6Xcw4vAwCnWVY6f/48tFot4uLiIJFIMGPGDNy/fx8ZGRlMGi8vL8YcZtKkSYiLi2PFfIejj1j6tjraTFomk9GMGTOosrKSiIgePHhAfn5+JJFIzKa/ePFir17WHI7FaRfIjx8/Dh6Ph7KyMmRnZzPuWDKZDGq1GnV1deDxeIxfoUqlwtq1a3H58mW7Ortw2BBLEukoTfbgwQOSy+UkkUgoLCyMNm3qHE2mpaVRWFgYTZgwgVpaWqigoIAmTJjAlC8+Pr5f4Zc47MOgCLiSnp5utHGqVCq1S+AQIqKnVRW0e9d22r1rF12/fp10OqK7xS822z7Y4cJ59oH793/E22+9hbKHlcy5devW4fGTWnz66Wr4SDzYLqJTwoXztJLWJiXNfs8wKbx4UTIdPpzFhGgCQHfucp9nSwyItUtnwE04DFqtwU8xJSUFPtKR8PaWoLa2FoArXhIPTqNKe8L66NLpcBVBLpcDAHbu2IG62lpMnjwZZ8+ex6drVmOEr3WuZxydcEJmhtGjQwEAqes3Yc77c9DQ0ICRI32RmPAO3Djd32e4jr8Fzp3Lxa9//Tbz/6hRo6yOATZUsdTx5zSZBWJj47Fl8wYkzZoFACguLsZ/G/kqHj22LmymJdiILsQ6lkYJQ3V0SUTU1FRPFRWdc2Lbt29n2mTr9p19uld9fT0VFhbSzp07afp0gyn5YStDbw40BsVkrCOoV9bQqpUraGx4KHOuqamJNmzYRABo3vxkelpjnYNufX09paSkmOx0Fx8fT5rB5BnTjtOuXTobHl4+qK9vwM2iO7h65RLQHnrqWYMSADAxKhJSHy8AQJuFe3zxxRfg8Xjw9PTE+vXrGdu8xYsXo7i4GKdOnWKCwAwFhk5N+0BH8JKINycanY+fOgNRUZ1xwjpCpzTrgYMHj2DHjm24XXjFKE9ERAQiIyMxevRoTJgwYWiaJllSe0P1c0lEVFlZThvWrSapjzfTFqNGhVB9Y+dGri0aolN5+bQ0ZRWFjJ1gYjbu5+dHK1euHFLmSFyfrE9o6GLeWco5cZRKull56IiouOQBrdu0xawL2/wFC6jmBfwiBzKckPWBRYuSjQRnwoQJVF9f3x5FxzTG7LKVqVRSOTQFqyvc2qWVfP3ltzh5/A4AHhYsfAu7v8xFYWEhPD09jdKNi/DBlPhkTI6Kx4TXxsPV8fH1Bgw9Ctmbb74JoVA4IPa/7iuG/SjcwR/WAPDroNW2gY9XkXfuPAAdPD2l+HrnduSeyUVlWUcuCSYqgvDu7AgkzoyHl/ukfj+/qKgIf/7zn9luBsdgSe1xByg7u7PftWzRpm6tpKMXISUlhfX62ePg+mQ90kItGoPgLFuaatRwy1csNp9F19S3RwxyOMvYPqDXAt+eOI7qn8ogD5JDETkJbm4DOz6aI7C0QM4JGYfN4KwwOFiDEzIOu8MJmQnNOHRkPfh8Hng842PtX+f0sCzOYQlOyEzgIzhEhjde79zhgwfDBmArl2fgxg+FbBdwwMEJmQkihI2egbQ9aQCAdasOoPrpY6xalwQAuH+/rFv6IWbl2g84ITNLM1rVagA+eG1MEHykErwqkwEANHqXbikfAmjo53OGBtzapRnq6opw8OARTI2eiZBgOa5e/Q5ffL4NEAHhvzS2BxNDznZxnR9LM7dDb8a/k+++22U04y8SCWhUmCftykhh0jwobyKJ3yhKXjaX7lbeZLvITgFnft0Hbv9QbPS/Wq3Bu4nz8MHv1jHnGlqeoK6yGLs278N33xWwXWSnhhOybmhVj3H7B0Mc2tYmQ7gCb29v/K+/fG6ULmy0HKs378SoiEg0twnZLrZTwwkZg2F3usKCO1Ap9QgPkcFN7IrZsxMhCwzEwW+OGaV2BeDrOwJe7n7w9uBCF/QEJ2RA++jQoI0OHvwWt398iLlz5wHQY9q0aAx7aRi2bfvfJrm8fIZDLPo3iEWe/Xjm0IETMgCACsBD7PtyI77ctwulVaV49PARgAYool+DQChA4fVz+P3/+J94UvesPY8aLq4C1NY9R3OzYQ9JLg63eTghAwAMw/2iM3j/Dx8zZ7bs2g2gGT5eo+Hvb/gcpu3dhIz9BwAAerShqKgIt69cQlGRoQ/HNaZ5OFMfoL0/9hhtDSI0NwxDayvgKtRC4i8GYIiqWFetQkubHv7+hv+PX/4/mPHv89vzh+L7f5yHIlzKdkVYxZKpDzcZCwAQAwiCmwfgZiFSp0RqbLQ4RfEulq54CLVKiNi4uCEvYD3BaTIOm8Hj8TBixAg8fmy8xzrXjeCwO5yQcdgUc4FkLApZxydzMPGzn/3MxBDRUcfkyZPZrj5rDKk+GdsvzmBrz+7weDzIZDI8ePDA6PyQ+1yGh4ej3d/UYcdQQiAQmJwbckLGJm1tg98/oLm52eRcj/NkbH9e7MHz589Ze7ZQOPitNdRqtck5s0I2d+5cHD9+HG5ublCpVMz5gRB4pWMn346y6vV66PV6aLVah2953R1PT080NDTgpZdegkAggEajYbu5bIpIJMKnn35qct5sx3+wwuPxEBISgh9//NHhz8UQ6PhbwvlVk41RKpVsF2HIMeQ0GZsMoaY2YkgtkMfFxaG0tBRisRjV1dV2CfDn5uYGrVbL9A3d3d3R0NCAxMREtqvPGkNKk3Gww5Drk3E4Hk7IOOzO/wfqkwnDzgja7gAAAABJRU5ErkJgggA=" alt="" title=""></p>

<p style="text-align:start"><span style="font-size:15px">A.V1示數(shù)減小,V2示數(shù)減小</span></p>

<p style="text-align:start"><span style="font-size:15px">B.B.V1示數(shù)增大,V2示數(shù)增大</span></p>

<p style="text-align:start"><span style="font-size:15px">C.V1示數(shù)減小,V2示數(shù)增大</span></p>

<p style="text-align:start"><span style="font-size:15px">D.V1示數(shù)增大,V2示數(shù)減小</span></p>

<p style="text-align:start">?</p>

<p style="text-align:start"><strong><span style="font-size:15px">分析:</span></strong><span style="font-size:15px">①電鍵S閉合時(shí),電路為電阻R2的簡(jiǎn)單電路,電阻R1被短路;電流表測(cè)電路中的電流;電壓表V1并聯(lián)在R1兩端,測(cè)R1兩端的電壓,因此示數(shù)為0;電壓表V2測(cè)量R2的電壓,即電源電壓;</span></p>

<p style="text-align:start">?</p>

<p style="text-align:start"><span style="font-size:15px">②電鍵S斷開(kāi)時(shí),電路為電阻R1、R2的串聯(lián)電路;流表測(cè)電路中的電流,電壓表V1測(cè)R1的電壓,電壓表V2測(cè)量R2的電壓,即串聯(lián)電路的部分電壓。</span></p>

<p style="text-align:start">?</p>

<p style="text-align:start"><span style="font-size:15px">③電路中單電阻變雙電阻串聯(lián),則總電阻變大,電流變小,原來(lái)被短路的電阻電壓電流都變大,另一電阻電壓電流都變小,所以V1示數(shù)增大,V2示數(shù)減小。</span></p>

<p style="text-align:start">?</p>

<p style="text-align:start"><span style="font-size:15px">答案:D</span></p>

<p style="text-align:start">?</p>

<p style="text-align:start"><strong><span style="font-size:15px">二、滑動(dòng)變阻器滑片的移動(dòng)引起電路的動(dòng)態(tài)變化</span></strong></p>

<p style="text-align:start"><strong><span style="color:rgb(0, 0, 0); font-size:15px">解題思路:</span></strong></p>

<p style="text-align:start"><span style="font-size:15px">(1)</span><span style="font-size:15px">判斷電路連接類(lèi)型及各個(gè)電流表、電壓表所測(cè)的對(duì)象;</span></p>

<p style="text-align:start">?</p>

<p style="text-align:start"><span style="font-size:15px">(2)</span><span style="font-size:15px">確定滑動(dòng)變阻器連入電路的部分,判斷滑片移動(dòng)時(shí)電阻的變化;</span></p>

<p style="text-align:start">?</p>

<p style="text-align:start"><span style="font-size:15px">(3)</span><span style="font-size:15px">串聯(lián)電路,定值電阻電流I、電壓U1同大或同小,滑動(dòng)變阻器電流I、電壓U2一大一小,且電壓變化量?U1=?U2,定值電阻R=?U/?I。其中小燈泡為定值電阻;</span></p>

<p style="text-align:start">?</p>

<p style="text-align:start"><span style="font-size:15px">(4)</span><span style="font-size:15px">并聯(lián)電路,定值電阻所在支路電流電壓電阻都不變;滑動(dòng)變阻器所在支路電壓不變,電流與電阻成反比;干路電流電阻與滑動(dòng)變阻器所在支路電流電阻同變大同變小,且電流變化量相同。</span></p>

<p style="text-align:start">?</p>

<p style="text-align:start"><span style="font-size:15px">注意:電壓與電流的比值可轉(zhuǎn)化為電阻。</span></p>

<p style="text-align:start">?</p>

<p style="text-align:start"><strong><span style="font-size:15px">例:(2017年徐匯區(qū)物理一模第16題)</span></strong></p>

<p style="text-align:start"><span style="font-size:15px">在如圖所示的電路中,電源電壓保持不變,閉合電鍵S,電路正常工作,下列一些數(shù)據(jù)中:①電壓表V的示數(shù);②電壓表V示數(shù)與電流表A1示數(shù)的比值;③電壓表示數(shù)V與電流表A示數(shù)的乘積;④電流表A1示數(shù)與A示數(shù)的比值;⑤電壓表示數(shù)V與電流表A示數(shù)的比值。</span></p>

<p style="text-align:start"><img src="*vAACzYeNyAKjeig26GLEW0CopLdPvdm+txLoH0dNvjJimj9H1cuoblZRGUUVPKbU3fRFeVXzdE/70JfoYiaIQhKq+pB8SJlyueQUFSQsMwLFnm1G5fOSaDQAwkIrvDkHi4LboB1XmaDhYV5Xadz5oLXX+l17nRBsVvxZJmnpHAQn2jGTCZuZTMXU2p58LqSTdIUgMRlgxG0DUzNEneGErGFJvxjhG20SjIIKIgUQzfd83oig05Y/B0Pt9IwEpKSlAOISjdAWCY0oEAXXsTaHn+0aEcKIULlMI3aIGv5+AtvAs43b5xaDIGgRBBEWB9/OpQpC1eu0VI7FV4WxX9AujgtTwBOe0em6YzERnp4kVJVC0wHu9xr5O3tiRk1WohQepJErhMkVQTwCvom5YnamSj0sS3X6GgwiKFIM8b/F2elHdcUkLJINR0aUQJEL0jyJJAZCfvD073j1ul1sTjzRFSiH1Npk8enLwi3XhI56n4w+TtKWJIaGEHUpyC6+j3efXdWXpGYUZAE76vfGHCdoCDTrGCBi5oB4nVwdvX9UWAHwLuhKM08abiZGSIWmokMnjRoBKS+jbC1KrPK8D9duwK26pjtAYITIxK46gB5cFDu0+1QYAmWvmx2ezKhteoPcxoPbSZ3FyZorSpqemmBU3uHTSXf0in7uBuCSOd732vKN8ypChIsMjeWVeqEbd0hUHkkEjJGOsXeJj9yzE4/WNDkfxVECgWrI6+Kov5o0fgokIFC7hAMLcB8Acb0JobbUiMkZKgi+2eFKzp7uwLBsAKGRnw/PvO3xrhqh5C8BUDgDp/F+Aire5Qo9sLYfrS0IMpNNvu+auVZk+7tOKU4uGen9AKSnPBzAr7tsTWstXalNJsWpI3f/cXLAslutKx/6Fg1nsLKlQ1iMLID/eg3i/NiNAxKQDEo9ojwRc/qxpA4YbFrRtG7x/PN0RKqdkZLYiK+6jAtqCsdgQTgiqirqumoxlod2lRZHibOFSXBjAoteHNBYI8ACRBCZq2AbME8dq8+kE1PUlkQYHIGAAgJPvTZobWvNbt0rhJo6JycccMYmV56WcFEZsDYDJ5o40gt9DJpO05EtJ7TyeK9hUQ+2OZk2QSCjrQMnHv3LiS+Xojiy/jI9Cafpb*aUe7Mcn8TUAiYnYp+nGtn/cramosCf8L4crS9RVAghkgAKU0MzU2d3RSqGTGFrjMVrOo7iIsHYZqAFySx4/EabxUsEe3sYCrAuUocjFO/yDJtx+vy+OlxRTVzAi4gnv3IcoXJ/06kv/wHPnwAgUEDuqrpMwUQJfICFH9xuoNIR7wGL1GvM2yE852S8EkURgtcfABWxyoIoCbyXh9FEXBANDehQTdynBNbc6pe/Ovq1fG0SEOogq8BVFrgty/KKe7J8DUhOd07KzbDmZRuNZQC+jjsHMKpObs7RpEoAZqgmjpfw0kvRW4qhrtqKi9NqcWg+ut+YOAengB7lPXj4cT5hAT9Z3RRq+eiIp1eiRJI2EBJAGyJ1NsYEEDAYGQMNMlDz89mqiUshpIrSIB0UaBNf/6YQMADwVuNAcWFXw3/YJ/KwAN3IWZMSoEgRKaKHTD3+m649kjFoBcX4BJb0eEBLRikAi9fvq++JjXqnahGRIR8WFSSzo6ks3Fg6lX7x+dcBtN/gisGWN8ANA4xw1zpWz1ZxKLvyxjuHWCqNYVhRYJjODprjexjaz3l9wWZdtf3QEgiHcCmIGpKiP7wx2wmwRQIAZ2bQBhGAq3lWTIsuU9x0solJ7mCMjIGAgDYmRWjk2BtMEDSR7tQBiVCWWHQHPKoY+Qt+3QvAtgMAsq8AaMpKATA+djYKT+h4bGJSO5QYosrT/7sq5krJLlfVVsu00eVVGgDxsZBUIVzac95D7TGj0xvrvOvyh+NZc+xQy3BjEpAUU6skiBh5VZxu2VShiu4Db9cxpfOHY3lyVZbLfmg0clI8d6jmPAvXYir1xcDm/oh7Ww0sH75u/QImA3q35GVZvoU1/VFTSZCxsfeEA/ULn30CmQtzyfPbfLzXvGFYGYHug4GjMvXLiFTCyvCKG6TmRbsO7rvQ+j8T2StXxhdPyNRQZ7j0MQ4yczRtfATqalp9BqPBmluiGk8pyz4cVQ7OIZzOSQ3ejvQkc37BZJOW5zR2AUwB0I5hvkhx32iqaQAANNcfnD5tQvh6uH4a0aWr+pVAoRlYnjrtqCwvGK5ZLifVOXXOhnOyLB/IBiw7w9f76dV3or1wN0sx2jbuA8DOPGOpLM+YlHDcgwpgffT0/YLU8Cv0U0uuqkI4ZjSb4ACArPKLxfxpG8AnrJOcfLG+fI4q2ZjVcnZboRJM+9HtU9mleB162*2ooed5ySAtKjmnR5kXX1v1he8pfbJSeU4Upc3DgCIVI8nqku35+GyrInuDzti+8bw0ZnBe6FLQQ9qgjzqCH0iUeb8cJhG/SGoeeH8YXtc5kRM2ElUD7y5CfZB2eAUz9PvAACc4KP2iDBp0KX2Jx/5+221HcMNYyKNOqbBnR7E5KjH+ThcdsrxKAVGC0Op2mACw/ULNT/11z+pAjBjkiZxBj7YAhjRM0DV2/IrwnGZe+ZP/+1KSK6MAo7odqt2LfvgTfSE7j1P8wBwVWujW9WvYC8EPN7YutQrbKT+Ur8fdRnrAQAz65S1JfV5VAl4IOFe6sc/fpIHXuiXNbfebQKOoA++2IzBd2paJNw0AtinHLL23h0AYM60q2JvG1IH823fWhtwlFh+7gaweErmBAxPAgWIpNDQBgAiLrw5s7MbXrc1SFicHZ272v5QHPI2fLNlanXreYVn3/HjTzC+IDBdFXtzqDfQJgZiMEASwWY70daY1L7HBXTtB0CPXzE39Ey+eksna6IIihR5QRAkijbQgCSIfSJ4g88Phoe5D+HWzbdrI3kvx/m60NgSglT9InxAtQLphmJgmTxnFBLN4UiryCVRgo8naf7IbLZ5l8Mdbvn5xW9VWtVwAQm3E3mE7veBVYX0ZkN3erLXjzDCswAF1L5OAYAfWGKGKcOREYVEZhqZ0xdYlhKDIkmTfLvNWj6br64BsHxNTPedbedOLbpk60AzHMj4aECOPjHsJDJ+sWTcLxe1PLWWBcCm71OlGmETek1+cDcSRj5QzPTnuVY4+mU9lA2slzeDOjPgOvB7WZZlee/kF2RZnoyse7IsH8gsUQ2JJE02kFFpkEpAVbDD57EZAKC6m8yZommphcjRghwkIXnwRwk18wGg1e4EMLethAFQRcUYO03vvD09p6hyRFI6Oqn8rnwYqecGXF8QqoF88vk9WZa/PXxTluXL9Cy1L9QE6UNg8cZPRz57e4GBv7qWjTkDLt1ejc3qc01utwfw2IbN4gYTA8vAkMe2tqD+UIz9dK16dUZsGUPL2/avAYr/NHIp3cLmwbHMmWWTS9ZFPuU5UekA92XMAI19S8UMPePmyDEdGCq6ulxutKzce+Lw4avnPltHg5j0fux9bZDuy7+nIzXVUdP1OdZpuQ6reVqxA0DFwFfV9PH+1qcquQ+aPndoGKqNel1tHS2NncCaksFMNUE6u4ph+bS3Rhudx1LA6+lhMocojWn7Fwcn28jk8To+5dJFY/JfF8aWfoD/weMHCOn/Ae5DF89le9IMAAAAAElFTkSuQmCCAA==" alt="" title=""></p>

<p style="text-align:start"><span style="font-size:15px">當(dāng)滑動(dòng)變阻器R1的滑片P向右移動(dòng)時(shí),變大的是</span><u>  ? ? ? </u><span style="font-size:15px">;變小的是</span><u>  ? ? ? </u><span style="font-size:15px">。(均選填相關(guān)數(shù)據(jù)的序號(hào))</span></p>

<p style="text-align:start">?</p>

<p style="text-align:start"><strong><span style="font-size:15px">分析:</span></strong><span style="font-size:15px">①滑動(dòng)變阻器R1和定值電阻R2并聯(lián),電流表A1測(cè)通過(guò)R1的電流,電流表A2測(cè)通過(guò)R2的電流,電流表A測(cè)干路的電流,電壓表V測(cè)每個(gè)用電器兩端的電壓,即電源電壓,示數(shù)不變。</span></p>

<p style="text-align:start">?</p>

<p style="text-align:start"><span style="font-size:15px">②定值電阻R2所在支路電流電壓電阻都不變,即A2示數(shù)不變;滑動(dòng)變阻器所在支路,當(dāng)滑片P向右移動(dòng)時(shí),阻值變大,電流變小,總電流也變小,即A1示數(shù)與A示數(shù)變小,且減小量相同。</span></p>

<p style="text-align:start">?</p>

<p style="text-align:start"><span style="font-size:15px">③電壓表V示數(shù)與電流表A1示數(shù)的比值為滑動(dòng)變阻器的阻值,變大;電壓表示數(shù)V與電流表A示數(shù)的比值為電路總電阻,變大;電流表A1示數(shù)與A示數(shù)都減小,且減小量相同,因此其比值變大。</span></p>

<p style="text-align:start">?</p>

<p style="text-align:start"><span style="font-size:15px">故答案為:②④⑤;③。</span></p>

<p style="text-align:start"><img src="*qu55+nnrqKUIpBQRBEASZO3DdFgBBEARBGgNVF4IgCDLHmHeqixDS4d96v2rl0rVkCKXMsOSp9bmJgwiCID4IHb4eIWR3nV2rWzVKaek5AYfsEJur6hU73B1lMrCrVz3Y1ov6N8VufJciyO5BR1VXj4wI/jrDX7VUHvTO9zRT5Tll5kjpT9rUerXk9FRFVZ3RepNWGl6V+qBMf1cebAdl3eqvpcpeMhAE6TUCqa5QHuNahZQOdmUnlI0yPkX5aJS6P6xVtSDXDfLD5lov+K+qmiwdNiB8dFLl11IdX3mwoTYJ2O8+LyI+vY/aC0F6lj*q93zED4DXK2X9FpFtWOw9refKgfKpq8bUGZ2dU+jlyqAWgZfLflb7Nmq1lVpFaq2TOWvAorRer9X3kJlAqCWQpA5RB3VFZZbqVF1Uut9vBV5mlBpwe2nSh1c9tdaZVbW0edCpac1p6HDchhWfcOo24D+7VlXP4UeYuP/SoSGF4L0LJ0O02gTQV69aw1/VfVKrVGy1hhXOcxVFcl/dK50o5VeNywLL0T8bdAOhA42anJVrUIvtCSCIA3RZdVVy1vY9Yu22/VXS7BG5fE3BEs/lGnuVoLsaxlPwd2VzV23CWqVj+oKQeY0u4nVxWiH8gsyy1L1a91FTrXkDxKtEGTwrfQr+tgoTQeSlM6xBbG62vGyEjDWBg0sBNlt6BXV1cvDSt3AyKq1aNRhWDqf5x9K1/nI8iBNRAjBxcUIgnSG5lVXuIF87R55fWygugHWQUbk1gP2yubJah0p9fg12mhVG6G5lvex2/wFa7TxQ6HSpVk6Pdl1xY8gSKM0r7pquYl8Tg641qodNDFX5P/bulkhgjsMm1su1sRigBDXD/hr91oRlZXxhB2O7KjqPwweGoMgSI/QksPQcxOFFdRQdTTp+gjS3Hga3GEYbpxILfk7lqsi+OLiLjoY65q5CIL0MkGXJNca/oIPQD7vtj7nV31V78xwXCqJT8t0l7o5Sjo5HNe1Y3yMLX/l0Uq/V1WTVe/kIA2LIEgvEGhJcuvneGfWWvwUsORGz28HISZ2ajEDb5lh6p9XqdFV0i1WsFau4SArsoO3QHD5gwSSYPpdBJkrzPdHtIm8ee37VSsCd2u09TeY/I2kzoTnzPM7HEF2S/DBRhAEQeYY826rSQRBEGSug6oLQRAEmWOg6kIQBEHmGKi6EARBkDkGqi4EQRBkjoGqC0EQBJljoOpCEARB5hiouhAEQZA5BqouBEEQZI6BqgtBEASZY6DqQhAEQeYYqLoQBEGQOQaqLgRBEGSOgaoLQRAEmWOg6kIQBEHmGIFUV8c2s6+8UCiXbqXY5gRod/m9UHj7ym+o2Kont0Ow7vaUzwkdezxDqVf7KtJTj1JvdmgrUoVSfoglCB1uGobPjrqVu8L7b1QfsPA2USbMnNu302tb/1Ztul6t3w9hSdKiMOw47rncVrwW9umpjrW/f1/vrndC+7og9AJDVl1lctTa577q1zKNVatKjdaz3TdZpdhBatEjlA7HdTuuxfZp/bctvtPVUpDBFWc7FGpw2KW9YaV0fPGOdECMFqvgL2TlrVjZAj4lh3vftnvo6M0ObVMXhD68NKm6wrU2Kn8eVp95dltlyVUPBnFx1JWt0nDsGK0L739jhds4zZ0QsPotvjpUas3SPm39/myiJb0jpYNd6ZAR8FotCt9iabV+Xus1t6E7tjPaK8gb+Rzq0Lr1CrcLWrlKKX6qy38gqDs6+6iNTlKplup6IH1eEII4i0uN7lBu8VbqW0v4WsZW5Zll8rTSOCFSeXNSShvVLkFO8zHLOtNTQcbKqjd2kJKbaPamS6sUL6yZ7NJi220t+RTegx3a7tGmqkg+XRDiK6Cf6ip9BQjSTJUNFFDKrqu3Vqh6K/g/P70w+teSsB2DS3BqOV2ryu+d061xqpMTHqXvjpX3TK/NwzVt/voMtbXG+qr3cFgOt3Y7hDrQoY2ONu3rgnBfMsKf6yqb/A8iX6VqrGoJNTSM+ri8QnzCK7V76VV6ajQJSO+EqzVhQtX66j+b1bRd1ZkuDmLBB++1cKWt+3JWdVAOXqD/TKRPhFHpn5qocpAxvRW3ds92aPu6oNIJ519+Xdqiusp8uE1IVvXWD8VvU0vZlJXp87UubfK8B796QOGrNkVdq6uJxvH/SVlfN607G3Kgl14riAEa5HOjBGzJqj3CBA5yM/dU8EJDPw8Yk+Zf96blbEK2udihTVSzshZBuqDWG0zTz3sd1dX6nHmIxnsrYpTRPodeVaO4k9Vv0RvZ0NqDgOUHee+uOzdQtTT/Mn3qWDmBF3Bisla9miD4rGTph9KX2YABaeHehJ25pVt8j+kKc7RDa9GZLmiXw7D0kW7Ub1Omb0NcgteQh6etM0ll66LYe9McWuxVdRCvrFcHqBUM4j9TUtdrUdfhXnrFuq1Rt5D2tUzVxzD4g9nQI9yoSKH/NnTLrKfocIc250Pq/S6o7zBs1D6tVBVlkWz+EX2t0JCobXX6+5vDLTokQyHg+qSuRECUnVN1bqByKUwQa6w5V0zZ8R6ZwmwiFCJg6FdAmvZchbva138is2k6/1SG26FV2yegm6RNXRDi2pWgiaBambIK3eQMMvq0fgmPyq+tQ0uo/FpVmNCF97lc1c+hN07dnqrleg0uv3+BzUlbd9htKAq3iZb0Hsaqt1AjDbJ27dryYptMFLTx6iMJIYScu7b6T6quyqhVfi+8FpQ9lZXUEr5rHerbBQ3Rvi4IWMGABM1h2IRK8PqsoTu19Tu7de1VV7W0Un5DEVadEb6WT7hqS7a1cSpFKrt0kKm4Who3SNt2cnq8uZ4K6eJrzyUf/F21ujdxiY33vnDaBkrpfQes3+jJySitkXckSPu3yegJ8QW0qvDd6tDKLmilFuHK1tBFg9PYksxaUyA+vhT/yYa6*uuo8b/YBDnZCtrv8uUeqUCCCV5RNMjZt0Wq+WRC1iFII3TaF3qzk4Fj7cOMXNH8JijEH1olYFY/qvdfST3eP1XG6++esOFFx7fmPx+87hr1649/vjjg5VTtYJ132KDv+kGCeluheZurfZ2aEUXNPrsdKYL/KsQvB3qWF3+YXhVLT7yRioPNtEKVTqpkcDN*IG8f/UbZzSqNayDgjr/a4DidRKJyNDn4msvB9IBQ1dMchbYYgvjKXWQ6kPvBXbrjnKEk6SalT9VV1PV9XmrfXXaqVtvPpIQn4HKzZuDFJOwEcvYIBVwHYolb9uI5B6NNuH5cKE16FVuqCyLo16+EPsgrI/te6tCdnvHHpmnbZ6xptb68oIKFWIL/5N17Eh4RsVqYm1B3ULDP5C04rJFfDFMIgJEkoPNtFTLbD2XPLBGwDOuY9ef3yrZW28+sgVFz0GACuv2vDohcsDVrbRoM2GxoeOvfD5n1N5sE1S1eqChsbPdndBuINhr0yKIgiCIEhAcJdkBEEQZI6BqgtBEASZY6DqQhAEQeYYqLoQBEGQOQaqLgRBEGSOgaoLQRAEmWOg6kIQBEHmGKi6EARBkDkGqi4EQRBkjoGqC0EQBJljoOpCEARB5hiouhAEQZA5BqouBEEQZI6BqgtBEASZYzSgujq533P7LtpcgcF/1ZVWQhAEmVeEYHWVbXwchG7X2q8uc0JOBEHmDCYAtQF2AIxpZsZxwXYgq4IJWpFudqDoOAAm5CcAHAdgyttDUdd19mFmZqbbdeg56qgub0/oyiMepZtVlu7ZXLkRdeUu4z2oKmpthd5TQiIIMlfQcrSQyRiGCcA7jmOYYJgQi0FOKeiavWnLa6rqAIHUAFDbBeBVVVUUBQAikQildGJiYnBwkB1BPILuuFy2l3kTWzXX3Ry6od2jG6hhPWVTa4vr0rr7CxmuwAiC7FbYALwNpKho+Vh0kaKJ3//+Nffe97uXNz4lRyEiJsa3FB1bOPtTn/rqxefstc+wGB0CgHw+L8uyLMsAoGlaNBrtdjV6i6AOQ89sardAlXZY67ZOLeMvSHWYKvIk8bHGygRGKw1BEACwDA0AwJFyGfsnP/3potGByenN37v8O2Nbd2zeNPHaK9s0vWDqmUWjQ5/5zGePPebE5557bnp6OpVKybI8OzsLANFoFF+Iy6hvQ1QeZEP5HLK6atlVVb+W1bSuJA2VjyDI/EOb2DaV6hu66CtfnZjYce2PfjC8cKFpWqKQtEw7ERMJgKIU4vG4ljfvvOPuH1y35oc//OH+++/f19en*pt26lUqttV6DmEumfUUi0+o/zcpZY71LO9do9qIgjSMWamt46M7v3uI48/YuW7rr/+xxSUqfz2wdQoABF5cXpKGxgQ4nEOwDJN65NnfGxwUfpjH/vYAw88YNv20NAQK0RV1Vgs1u2q9BCtznWVmU3BL1xWbOnBqgI0X8NG5r*XtTfNESrC0EQX2YuuvDrhYz8s59fCTzk9a3JqACQBJoo5iGRBMJZAAXH5XjoM4ogp+DJJ5885ZRTXn75Zc/eymazfX193a5IDxForssbf71Zn6r4TCn5TDJVDTsMt5Ktz3WVFoUzWAiCBOefzz99/wN//N7lV7CvEVk44zOncUKS5+JHvesD2Vk2vDiDCwYIHxscOmBqamr//ff//Oc//41vfMNxHBYZn06nu12P3iLQXFepgVXmOgs4A9ToXFfd8huoYYNzXaXqOYhpiFYXgrQVSqnjOIIgAIBt24IgOI7DcVwPvkGapkkplWXZsizL*KxmK*p5/xvtUnn3P6Rz8jy2DYjhyZBdDec8wJSi71yF8elWTgRMOBjOMIb3nT+x9/+OnUkMNxXDabffOb37xp0yZRFAuFQjKZ7HblGsAwDEEQeJ4HgOnp6aGhIcdx2NewqG91lY2882QgrmsaluITYdjteiDInIcQwvTW9PS0IAiUUp7n2UthTwEAoigyUQkhkUiEyf/CixuPOPJdUgQAQBR523UccP/zP/5jw/oX//rkc4YOAJxlua+8uvmc886NJYDVLpVKHXvssVdddZVhGExvdbt+QclkMrIse4qKTdeFq7d6N4ehj4JsQiW0W7WU3b5lXxEEaYVisei6LgCwOIVMJsO+Bszd0zHYs28YBgAIgsBxXLFY/POf/7xgeMk+y1e4FGwXOB4ELmIbZOU733PUu975Xz++IhqHoqJExP5f33z7Zz77WU4CtpCLUnr*ae++OKL3tKubtcvKP39/aybxsfHWQ9ms9nQ74r6EYYewQfihrxkHTBN6kbDt+LW8/8hai8EaZFEIjE9PU0IGRwcBICBgQEAUBTFM2t6BJ7nOY6TJMk7wnGcaZqHHXqU7YCpG8m4DOACiLLcb5v2xV+78JSTV2vajxybqiqdnVFTKR4o5HI5NrPluu5LL73EXG3Ma9rtKgbCsixJkpgCY7QjNrKZdV0+EfOtHGyxqKAV9i2w1lwXZtNAkK4zMTGxcOFCphK6LUsVXNdl2st1XcdxJEmKx+OZTOYr/9+3vv6NSxMxgQMHXNfUDDkWA8dU1ez73ve+o95z7PfWXHvvfX+OJ/sOOfSQeBwEADa5tWPHjtHR0QULFkxNTUWjUWbP9T6yLGua5n2dnp4eHBwMPSFIHaurVgiGz08aGrvL5pOClNM+3eCfMqMdV0QQpC6apnEcJ8vyyMjI4ODg2NgYS+7XbbnKsSyLUmqaZiQSYfNzmqb98Y9/vPueJ+IxCUBTjVxcTgt8DFwBeIglpS986dNf/OKlp3z4zH888/IXLjgvHgcKkMvl2IRZLpfbZ599/vnPf8bj8TnkwqGUeu8WkUhkcHDQsizDMMJVXQ2/vPhrjhD1Sq0lwC2W70W3lzmp/WMxcO4KQbpFNBpl8z22bc/MzEiSZNu2ZVndlqscSZJkWZYkyQvWsCxLUZQNr2wDAAd0SnQAl5cEowjgckDoiSevWrzHgn/5P1/fb9+32CYAgANGOp2Ox+O2bT/yyCOHHHII01vT09Pdrl9QOI6zLCufz7NQQzZ+hr4oDb1bCIL0NI7jqKrKoux4nmdLndi8V0+h67osy+xVOJvNCoKQSCQURRkaeeeO8X/EElkRzGzW6k8uAQtABOAnAJSvfvVff3r9/Vu3TMVToNkgRQxqAFPVZ5999tFHH33SSSfJsiyKYrfr1wCu63Icp6pqPB6nlLquy4zREC/Riy5jBEEQD0JIMpk0TZONiQBQGgIQAvauf+6ufxTYJwqus+ufvfMfgKuAq4FrgGuD44IL4AC4EJEihBKgAADpvr54IkLBisWlo44cvfuOX0kwSGBRf98SRVcgAsCDpqUA9v7EJ76y5sp/Tw0ALwDnqhLszBavKMqDDz54+OGHJxKJYrHY7U5oAKa3TNMsjc4IPaYGrS4EQXoabyiUJIlNIrAjoV3ABgAAAkB2fQAA4gJTYQAuwK7PHAAIrgLAAXAAPFAOCAd01692lUN3lksB4Mknnv7sZz/7/PPPG4ZBKY1EIsViMZFIsBqxnSTZhBCL8nAcxzTNa6655rnnnvvVr37VmyZmN/sLAK0uBEHmPaRE8bwOV/GVe/0z8b7WH0IPO+ywd7zjHV/+8pczmQwzPlRVZXNjhUIBAAYHB1nsO8dxuq7zPD82Nnbddddde+21*oODg7u2LGj223Uc6DqQhBkfkMqTK6dcCX/ShQc4YByAASAK/8VKf1/dg5wHHfttdc+8sgj999/P/vr0NAQ2/XYm8FyXZdptUgk8vjjjx9//PG33HKLIAjM57Zo0aJut1HPgaoLQZD5DXHf8K+C0lFyp04ipHzwrNBe3ndCSDwev/XWW2+44YbTTz+dWVcsyaEoioqiePn9tm3b9tBDD33uc5/7yU9+ctBBB7GIDxZz3+026jlQdSEIMr8hDhDndb1F3DcaT1BqfwEAAL/TZ0i4N5z3RqXlfZuamgKAPfbY409/+tPChQuXL1/+/e9/f3Z2lvkG4/E4z/Nbt2696667LrzwwvPOO+/HP/7xPvvs09fXx2bFRFEkhORyuW43U2+BYRoIgvQ07Z/2Z1kqWIHkjdNa4AVreBCfIfMN2ssz4DjTNFlWw6mpKVEUzzrrrC1bthQKhUWLFqm*qrq7OzskUceeeqpp37iE59gK9gMw+B5vteSXQWhM2EaqLoQBOlp2j8UsqxF3K7ZKa62O8oFAKA1/k*nQxgmjaLJFQUJR6P67oeiURyuVw+n9+6dau**dBCldNGiRSzvwezsrLc5suu6LG0C8y52uysCgaoLQRCkA0OhsktXCaWqyzRcSeZM05YkAcC1HZMQYtuWLCbyeSOVkgGAUigU1Gg0SjgqCN2Zf2FTZSw5LyFEVdVEIlF5WqFQiMfjHUj/iMHxCIIgbYfu/Mex/+4cFSnwPAcAkiSYhubYpsBxPAeyxFs2JFOyqkFRsYuqkUzHBInwXdJbLMNIPp8nhLBlYaIoZjIZFt8BAJOTk67rUkqTySTbh6Xb7R0OqLoQBJnXuK+v0CI7Z7YoAADPA6WQnc1IssgLxHE1wyzkMhOcAEUV5ChEE0IsIeeLhmE4juP5r0piFGnFRFl78MwpTdNkWe7v78/lcpRSy7KGh4fZn9gasqoG2VwEVReCIPMczgXOBeLuMrkoAQDQdZsA9A2kARzX1gi1ZYlL9ycpAOFAN0E3IF+wYzFZlHlNVwCA7tRbbEqsQ9KrqsoML9d1o9FosVhUFCWdTrNEwJZl5XI5lkxrrmybEgRUXQiCzGsoS+kEHABXu*LrbUydNXSVU7gOIG89NKzp592isgNJuMLRvfY5/bb704mBcLBzGwmFk+8wd7qIJIkqaqaSqUIIdPT04lE4oYbbmDBHQ888MCtt96aTqdZbL0syyyh+24Aqi4EQeY5hAJHvcGQeg5DAgByRBYjkqHnqaPuv/+Kn/7sx2857PCXNr7yi1/88trrriuoruNCqi+dy79x3VUHo98EQWAZe6empoaGhjZt2nTDDTcUi0VK6Yknnrh9+3YASKfTMzMzAMAS8O8GNKC6qu5xFeRXjcrU0E/atwlkZcmhX6sDl0AQpB7Vo+E5DlRF0XUFgMqRqONaADRfmD3owLcs2zu13/4HCIIUj3GW5Qgcl06lXYBuGV7MQGSbhBFC+vr68vl8oVAYHx/ftm0bi8tnOXx3mxEmkOpiuoq+kYYUmH/hZUdY4d1umYZr4Y9/ledcfRFkN+INw6C761m0bYjF45FI1LF0VSkIogTgrl1776pVq3Qdbrnllve85z3jE4WIzKu6bphdm0ZyHIdSquv6wMCAbdvJZHKfffY58MADASAWi1111VWebtN1ncXQ7wbUV12e0io77imwFiXwCikb6KsO/VVVgr+eaI5Gt3um9aha5eauhSBIiAi7/vG7/hECQEAQwbItAJkXhzQ9CbDYtkdvu+2fnz3z/QtSkq1s/d6/fS1CNJGQ9x99NNgODxwBYacNR96Y1bed8MQ0c5MRiYJZFHg6OJC+6ec/edeRR6TS/R857eMOgGbD9plCYsEe+x38joK9cwVYaZS8aZq2bXe7Hxqjju*HFXLFEOl9*rWmpdq3SUrzX0Vz3urycqa1S3Ua*0sratdLupUJWtnCIOhhBkOZgy6FUVR0fH2feth07dui6Pjk5uWLFiksuuYRSeueddxqGcfTRR99+++1dFFWWZb1QBFEEANeyOEn+/T33Grr6xKOPfOD4DwHA2rVrZ6fGTjjhhLVr17I4Qzbs6LrOctszZ+McorEwjYCDqY9*Vpa6fFSZdnFsbtS5jKXadMl19LrZZeoVGkIgnQSx3EkSYrFYgsXLmTbP65bt+7DH/7wwMDAu9/97gcffJAQct5550mStHLlykMPPbSbssqy93H79u0/uPLKTCYjCMJTTz21fft2wzBWrVoFACeddNLSpUvZRiosXqOWU6338VNdZSZXLb9W027DqhZbmTlSdVqoOauutISOtnFFrUs1E2opBOlNRFHcsGED+8zU2Lp16w4++GAAOP/882+++WYv0DydTu+1115dE9RxgXCRVMpQNOYJ/OY3v9nf389x3Msvv8xxnCzLey1ZCACaUjzkrQdYllUsFm3bdl2XjYdzJTtiKX6zLFV1Vd2D/grP56u/L7EhIf1PrvuTSiGruvXYkYYUofeTqh98mhFB5i2dyYlXCbsiG99feOGFI444YmRkJB6P/+Uvf0kmkwMDA8PDw3/4wx9+//vfDwwMnHbaad3K8m4WZqREAkwTpEh2etq07Fc3bzlu1QcopXIk9uzzL8QTSULIL2/+9cjIyIc+9MG4sLNqXv5Dr7KhyNOZ/mqLf7NuQJ1H6cBda6TuhSmfMk1T+adKmX2qU7WQgGoVQZDOIEnS9PQ0S+J+0EEH7dixg+M427ZTqdTs7Gwul3Mc50tf+tK99967bdu2ycnJiy++uDtyJlJKLhdPp13TTPf1U0qHF40WCoVcLpdIpi2XigK57F++seY//xME4Tvf+c5lF180NTW1ePHi0tG1F4bZhuiy1eVzsKo8wSvmr1H8r1g1Xr/REurWyKcpUIEhiEe3rC4Gs0u2b98+OjpaetyyLJbulv0pRKulYahlKIocj9uGKcgypWDbtihFACCbKySTSeAgmyum04lCUZ+Zmbn2yssTicRFF12USqVc141EIuHqrfmSOb6qz7Dqu0DV2MJagek+lwvST01EZNQqtlYEZtlnBEF6ChZEzqLGPb1lGAab4lIUhQ0Oo6OjuVyua3oLwLVsOZ4AlwqCAIQjHLczhZVhpNNJ27YJBUrpunV/POXkk1Ys3+e+++578cUXZVmWZTkajVqWxXLMzy38VFfA+IumTYRWRm3vopVrpPx/0mI4TRO/LZOwMvCy8uSumFyoRJHehL2wS5JkmiYhhL3ChzvaKorCzAXvv94yXrkkeI99TaVSANDX18dOYGEaPoWzxzmbzZqmycpnIemtwNLAa5oGAByLa+eFTL4AAJZpmpbDRHUd59lnnz3//C/svXTJRz98yqJFi+64447169ffcsstzOTK5/MsS2/rInmwBiwdxFjFw6WxgIUgR+oOfz4/rxW/UClV1ZD6hpx4JV/Xrl17/PHHBzkz6Dn+rdSET7XdBHSEIkjnyWaz6XS6WCzG43Ge573709MxLeL5stiF2PBSLBaj0Wgo5c/Ozi5YsMBbBcy2HWlCeEVRksnk5OTk8PAwM6pkWZ6ZmRkc7FeKxXgiwfQWcxU+99xz99xzz9q1ax955JHRxXuec845Z5111rJlS2zbpe7OXZt1XZdl2duCOaz29JrUcZx4PJ7L5URR7HSYRqU+qKvJfNZpla72bXp89LSUv5yBWXsu+SDcR49v/Jf+jeDfkrVUBc51IUgZfX19zOryhj82jxLWaKjrOgsOZLM+2Wx2dHSUEBKWISKKIlsF7LouKzYSiRSLRWa9BSeZTNq2zfSWpmlsiNiyZcumTZve/va3U0odxxGlyC233HLttdeOjY0pivKRj3zkiiuuOPzww1kJruuKAmfbO9vNG0hnZ2dHRkZC1C5btmwZGRmRZZltZSbLcrFYDHersPoRhl71qi4oDhhxF/CvtShVV7V0Z60TSqUti2hnX6/fcNXVG6qfH1y2hqpTKkOPqCj/1kOQLqJpmiAIzCaQZdk0zUqXVCt4q5pYQEFfX5+maYqihGV1ua7L8zyzb5iCBIBUKtWo/Mw8EgRhfHx8aGhIEIQTTzzxxRdfjEajRx111Hnnnfeb3/zmxhtvzOVyq1atOuOMM8466yxJkjyHJ7uc4ziCIOi6blmWp6uYUgmrPQkhS5YsKRQKbDotFotlMhl/n2oTBAqOr7qAKfQxrq4OqOu181EJ/l/9r1WZb7D0ukHM0Fpl1jLFumJ4odJCehO2ZpbtW28Yhm3bLB9EWPA8z0IVWLG*rLEtWE9ETzPF4tFprEKhYJpmoODg00UzualAGDhwoUA8Nprrz311FPj4+NFRVuwYMFvfnsbUOfiiy8+7bTTli5dWprYyTRNx3E4QiVJ4nhO0zTXdVk2DRb9H4/HZ2dn+/v7Q6kvC1phc5OGYei6HlbJpXRifKxqwdSdMCsLOwxo8zXO2nPJB28AOOc+en0wp2GjK5qrtkYQJyG6DRGEsWHDhj322CMajRJCli5dunnzZs8Oax1WDptFY2N6oVAI8dFjcSXswZckKZ1OT01NpVKp0gS4QYhEIkytMkccx3Gu67722mvTM5nVq1f/+te/PuKIdxICsMuDwuwqnudf34qFUsdxKHD77rvvpk2b+vr6CCGZTKZ0wq91eJ4XBEHTtHg8zuIwWW77cNMkdiLlYpCbwMc*pV9KiTpjr+e0utDrU6jtmOtXFCotxCEmUErVqxgH+Lx+HPPPZdMJkv9XS3CrC7mNlRVdWxs7NRTT52ammIpd1uH47jJycm99trr5ZdfZlcpFArMjmxCVBagYZpmMpm866679t5775GFo1/5yldWrnznzpMImZiYGBgYYJEXqlLgOC7CnJ+EOI4jSuITTzwxPDxMKZ2enmYhJN5igFDqSyllK94OP/zwmZmZsFqyFHyv73XaHbCONwAyJ2Bv7qlUKpPJlAWst16yZVmRSISZMqIohuvwKBQKyWSSlcmcfpFIxMvA1BDMgGOBHiydx8DAgEvBdSmlVBC48fHJhQuHya56eSaX6zi2bQuCwPE8AOctoPYK9KbiWoddiAVACoJg2zb7HGKXoepCEKTXaX92BtexbUqpIMq2bRNOYDGBPL/zEgQoAJBdbjfa+IYbmUxmaGjIcZzmNNbcYg7nMEQQBJkr6JoWiUaBUuY2NEybRaJ7C2mZ0mpadbmuu9dee7muOzExwULbdV03DCP0oLt5BaouBEHmNTsNAkLYJI0kCZqm2bYdje7MBN+61cWcZvF4nB2RZblbaeZ3G1B1IQgyr5Fk2bYs26FMnUxPTw8ODQmC4Lo7NZY3p8K0V6NTLDzPa5rGzDhBEAghuVwumUzu9p7DtoKqC0GQeQ4niLJla2z1FdvlhLr2rmDuUgXTpLKJRCKu67JsGoQQlh8EaQVUXQiCzGvGJ6YWjiyIRqPeQrFsNtuXTjq2WekbpMB5nsOAWJYVjUY1TWPpOSiluq5TSsNdWD3fQNWFIMi8ZmRkge1Q27YNXU2n0wBuLCoDIfzrS2i5Uj8haXCui1lvbNWUruuiKIaVYmo+g6oLQZB5jeWCS0GWRdcRAUApFuPRiGsaOzcTIRwFCgAUiEsAAPjGc5buymoB3odubk25W9D9rSYRBEG6CMeBKBAXIBqLAbjxeAw4jhMFIOBYFlCXEKoblmbaBCBf0NhWYV7+Noau66QGLIKRWVqeukK91SKouhAEmde4VYIGKYAL4FqmAYQoxWIkIkVkoaiaiWSUrbRl2oulYPc0E9IxUHUhCDLfcasdsFU1kogBQDyRyGbzACDK0sxssVgs5vN5TdMIIZFIhKUiDHfXZqQuqLoQBJnX0JL/vv6RukI0Upydvf66H8ZjsWXLlr3w0sYrr7y6fyCRSCRSqZSXup5FvTeRSxdpBVRdCILMdyp2bXABACwLXGfNmjUvvPDC888/v3Llyr6BQdMCXddt22ab1juOYxhGWNuvIMFpQHWVzT0G/1VbK9Du8psWw0ewVmRu4rcN/WT3aM/Qq1x2To+0EhIKNeIFXXCsbDa7dOnSpcuWLV686JVXXikUCpIIkUhEEARKKaWU5/loNCoIgqIo3a7H/CJQcHxbN3sMOAp0LMN9XXlqbYlZ60iHqRSgK3sul8rjf0KH27PrHYT0Ju7rqTJ2mVCRyB577JGMR9Op1I6JGV6UP/e5zwEAW1xMCNE0zVtZHPqmHog/9a0u9qhX3QiR7tqOs0VoADxhKo2/qgfbJ0zZyaWX64Vh0RPJv5V2m/bsWJv7tFIHro50B0J+d999xx57bDwWu/TSS5MJUdVhv/32W7Nmja*0Wg0FotpmuY4TrhbACN1qaO6ysaFyme1UnvVHQrryuRzTtWBz380rCp5iIOOz4bOPrUmvoTSnkGaqOn2DNJZHWhPHy3StGqp2ln+rRRuCyBlsHVRoiiyTUlM0wx38yfq/WP/8/4BFPJ5oPSOO+8sFIv33HPPxz/xGUrh5ptvLhaLsiwbhuE4TjQarUyk26a7wnEcVVXZdo66rrP0HE1U2LFsx7KZjBTAtCgFcNyd7WDbpm2bADaATV2D7cvMfmqaZlibKbdIY3Nd3rPqPxz04EPuSVL1a3PU0ihlbVX1QsENkeDt6XVKLRdcj9sHzbVnVdO86VuuF+xmxIdO3sOuqkYikWuvvDKXzcbj0YceeuiZZ55hOxSzpBiyLDOlZRiGaZrtHuhUVeV5nvkneZ4XRZFS2sTS5mKhwAsCLwheW/I80TTDE1sQJM+IpBRs25Zl2bZttpKa5/lemNjzU11lj3Gt/gjLbRiQ1q26sCgbSQOqw/YNjlUt4LIerGv/hWsld6A9Q6Rq11S15MI13BF/WKe0u6m5io+cJI2NjV11zQ+ZnbFj21ZFUeLxiKZp2WyWHSwWi+xkSZJYlHz77lhRFDVNy+fz*qyey+bzTZhgCaSSbbBJgAoiqbrJseBbds8TwDAsi2GbTkAwPE8U2Oe4TU7O+ttPNZF5p5/NpRp/LqDVEAxquqGHnlt90ZY/7q30p5eLhwfATrcngGnxyqrH/BCtSxdpAO06XWhRnEcCLzrumvWrFm5cuXL618dGFn04oZXoxJEIpG+vj5mb7EtvnRdlySJaZH23RKiKLKAxp3ycZz/A1gLx7YJIZFYdHJyku3a/Len/37ooYc4DrUdUxJEjuPYcjXTsARBAOJu2bJl2bJlbAfOgYGBYrGYSCTaVM2A+D2utR5m/zCwhiLK6g5/VX8SREj/k4P/yufMslqXfa51rSbap6Hz69aulb9WPbm5LgilPSvbNvg5ZS3sc6uXFhuk/ZFwcV2XaQXHceLxeKFQYL6ysMo3CCEAHABPgQMHqAPgAnWBECAcADc7m5UiiUg8OjGdHxhK7b90abFY/OUvf3n00Ucz+0PXdebBKyuZORLCmpnL5/OCIDCHYaFQSCaTpR8aglKqaVrlrivr169/6qmntmzZAgBLliw57LDD9t1339ITVFVlbtJcLpdOp336i+UXZs+O14Mh0vAoVveg/0gRJPrZR2U21Dc+NQpFdQVpk9aNhkbbM3jtdoP2rKxC5X3YxB1Yq4QeXAsxH3Ach5k4juMkEol8Pi+KItu2MZTyTULYJpLcTtXlAuyMRJjavn3B4iVAONshRU2PJaKq5vRFXx+4VVVlrkJJkipfwcNVXSzdVDabHRoacl2XTUE1UQgFoK47NTU1MjICAIpSiEQi31+z5uqrrx5ZOLrvvvsuWbIEALZsGVu/fv2O8fHPn3fON77xjcnJyaGhIY7jpqenBUHw2S2zM6qrMYdhdx/UWuZa6FPxAc3NslmQqkJ2n*vEVUH31DaM+BkWPvasyGLtiFaf39CwqXMYRjas0ZIxbDKAbhAyILFe06Njy9YNLpTCQEIAj87OzswMMCGY2a42LbtOI5t24QQnucrAw5DgV03mUyyq+RyOS8RcENoukYIGR4ZmZqaWLBgwcYNG0499dSVK1c+88wzyWQyHk8xFyoFKBb1QqHwn//x7dHR0bvuumt4eHj79u2jo6Ou63bdZ9jAIB58AArL6mraueRfnYZUV0PyBzGJ6vRHC1ZX5SMdxG5ouj0bbfZ2tGcTNmgTllOvWV1hZQOYK3hWl+u6zOoSBMFxnLBeIxyOYwWVWF0AQG3DIBzPS5JtO7rpRuNRy6aCQAxFicfj+XzecZz+/n420UUpVRSF53lBEARBaIf24nm+WCxGo9F8Pp9KpZir0GucBuoLoBs6oTQWka+//vobf/Gzr1705Y9+7GO2YQhyFICzHRcox4vgAhgGxGT44x//+K1vfeuEE0647LLL6obmdd9h6D+J5TO++F+yIYehTzxF5XgUfIo+uJu0lbG1oZbxGRybbs+A*u59gyop9vXnu1TXT5TaHXbv9004aSd67DlXIZhyLJcWutaC4xqjZK1HiXVdDiOk3fFiju2yVGXCAIATGzfPrJ4DwAul8tFonFBEmwHwDaYp857Rp555pnHH3/8iiuuSKfTTz75pCzLTEjXdXmeD6ubOI6jlDJjiwWpMx3WaPlF04xIIgBsemXDke98xwP3/+Gtb3sbUADXBY4HhwIv2i4QHkwTRAnAtgVB2LFjx1FHHXXllVeeeOKJLLSyVpwhIYR1GfvMzgw/ED1IsoOG/lp3HVLZQf8Sav217nXbVJ2yg6VtWLemzYnXSntWyhZie/oL1pn2bEKGymsFb/Om77oQ8RFmPpBIJAzDyOVybG1sVdwa1CrTpVRRdZdSwzBs26bUcR1L1xRKHfYvk8mw0zTd9EpxXXfHjh033njjcccdl0qlOI4788wzH330UUppPp+nlNq27X0OhbIeVxTFcZwmyjEotSjdOj62/wErHv6fByk1qa26Wo46JnUtS1MfffixH153g01pXqUGpblcjv3wtdde6+vr27x5c5CrzM7OsqVglFJVVXVdD6sdGPWNOG8n0ErVWvW9z/8VoFF/S9nLr49RUkvO4DTxGssasVZThEJD7Rm8pi22Z1nkfdVA/M60ZxNL+rzy56LV0u77rQdRFIXljMhkMoqiSJKUSqVY4vaq1EpSU2sQzOeLsahsW5amaTzPW5Yztm2HHIk4tm1ZjqYZLCSBAERk0XUhn88/8sgjF1xwwcEHH3z22WfLsvzb3/7WcZybbrpp5cqVzCpiYpum2UT4Xy0SiYRlWSybhq7rmqZxHNdENo1sIZ8p5m677ba3vvWt73r3u8G1DaVAZBFcyyoWBVm+8cYbb7/tTlUBOQqmCalUamZmBgCWLl160UUXfec737Esa3p6ulb5TGOlUim2nxk7GHqOx8bCmku/thJRVub0CDLoBI8pCDEvcMCJscoVSMHngRq6VkMRnj4Ha7nI5lx7+s/8+dS06kVLaTT6Y/4okq7AujKfz6fTaUppoVAghDS6MXGtPqKUiqJo23ZpHsLSpVqeANu2bfvZz3521113bdq0aeHChWefffbpp58+PDx*iab4pqamlq4cCHTsul0mv08rC1RPN+j4ziLFi0yTfP5559fvHhxo+VbHDebnVn5jsMfWLd2z8ULOdcR5Ai4FAgB033mH89dfOm//vkvD//54cdXvusQCsBZliiKhUKB53lJkpYuXfrYY48tXbq01nUVRZFlWRTFYrG4YMGC6enpdgR0NBBh2NzD6b9ktdQR1Ci1BsGwBpEgkz1lyaWqDpdBxuvgoX0B18D5NE7d7phD7VlWWpBmb66OqJm6C0txm0ql2PwKx3GhJnRwZ2em+geGAIBF0D32+JN333334ODgGWecMbpoJJ/P/+53v/vpT3/60ovP9/X1HbfqAz/4wQ/e+973uq6r*ooit6KLu+Dp/ZCDI5nD8jY2Ngee+wxNTUFAIsXL2Zp7Bsqx3Ts17Zsjkaje+65pyRwploE6rq6Zpp2JDW4du3af/u3f/v6N//917++5YA3H5JOg2EYoihGIhFCiCAIBx544NNPP7148eJaGYc9QzOZTBqGwWzQbDbrE0/fTGvgM4kgSO+jKAqlNJlMshVdbDKp6pm1Iu5qjXU8T/K5XCqddhzK8/zmLWPHHHPMKaecsnnz5mg0OjQ0dOcdt01OTr7nqHedffbZBx988D7L9/XCEJh/jFldbIHX9PQ0S1GRyWT6+/s9B1rrxONxLxuT956n63qjSettQbjy6itmJybW/Me/E3BNNS8CRyIRoBwQ7gvnfvG6G35y9+//eMopH/37C+v3f9NIZJfiYf+95pprNm7ceMUVV9R6CTZNMxaLVYbVhMvcSwSFIL1Ju5d8zdu3TBYFzsyskZGR8fHxRYsWsX2KQynfNLRUOu3Ytu1QnudfffXVSCTy/e9fXigo6VRqzyVLzjv33LPOOiuVjKd25Y9gl85ms6IoxuNxpjxM03Rdl+ktL9DRdd2w9kMxTZMthZ6eno5Go9FotLlUGjbAs88++/a3HeKC65iGFI2BoQNQoPZvbvrvQw8+BABOOum4vuHhBx98cNHoJyJpYAZTKpXK5/MHHHDAbbfd5tP4rL6EELYQjTl4Y7FYuPvCoNWFIEivMzMzk06nBUEghLB3+WY2+6gBAUink7lcIZlK5fN5AG5gcHDNmjUPP/xwsVi89dbfKMViIpEwDU3aGWvAMVuHjcXMmRmPx9udjlkQBMuy2BWHh4e9zL+NF8RxUfnGn//s5OPfn4pHgboAFBwXHHfpnnsVCkbBdG2XkxL9puFsnxgfSbtMAbOs+ffcc8/q1auZJH6tSgghxHVdXdfbsQ9nyMvEEARBwsV13cHBQS8oQNd15jwMC8M0M9m8aVljY2OUUkqd/77lV48+8j/777fi29/6BgFIJBK*opSBICzLIdl3fVsiGg0mkgkPA9e+2COR7ZDmKZp7HKFQqHhcnTze1//9uaXXknFB2xbtB3ZtCQQUo/+7fmzL/jq5skJy9F1PfPHe/8brInH/nQHMx8Nw2CeWEVRPv3pT/uUz0L2dV1nC+9kWQ4rUKUUdBgiCDKvYUOzIAhe6MeqVauOOuooXdeZo6w0c0dYXsrmYCkqSpdjNxG8x/N8Op1+8MEH2WdCSKFQcBznvPPOu/fee1kFZVneb7/9zj777I9+9KPbtm1btGgRU9W2bT/22GNsxjH0BBkNgVYXgiDzGi+sg+M4wzCy2axpmmxnEzZYs61GmPuri3IuWrSIOQk9MSilLNSwIWzb/uxnP/vMM89MTEwAwPj4eDKZPP3009evX798+XKe57dv3w4AN998809+8pN0Or1ixQq2rmvz5s2CIDz66KOf/OQnu6u3cK4LQZBepwM58Up3LWG5dGVZZi4vWZY9g4NliO9WO7C6s8g9tgdKKpVqohxWwic/+clVq1Z96lOf8o6zOEmO46xdC7kqY0B++ctffvOb39y0aZNn/1XSEzkMEQRBuktnhkLLsti6Je+ItwiS7TBCCOmut1AQhGKxyPQKi1VhuQSbW/D74osvvv/979+wYcOOHTuWLFnitSfTiCxvFs/zrNlfffXVvffeW1XVE0888dJLLz3wwANHR0drldyZ/kKHIYIg8xr2+s7UkmEYLOGh*re/JZlWYIgsBNM0+yWnMlk0rKsZDLJJqhYdH4TeotF/e27775f+MIXTj/99GXLlnEcl8vlmDeS6S2O41gkCMdxruvuvffeAHDZZZcJgnDcccf56K2OgaoLQZB5TTabZVEPgiDIsswSIcZiMcuyPOehZzSEtb64CbZs2cI8eIIgsGkqtky40XI4jotEIrOzs5dccgkArF69empqKp1OJxIJTdM2bNjAcZxt24lEYuvWrcyFOD09/dWvfvXZZ5/9wx/+AAATExPdnfZD1YUgyHynv7+f53mWdZ6lxrAsiyU29Hbecl3XNE1KKdtbsiswvcVcl2yD40Kh0ER2JcdxvOyCd9555z777HPyySf/4x//yOfz0Wh0xYoViqIIgmCa5p577kkpfemlly688MJt27bddNNNzDAdGRnp+kwTznUhCNLTdGbuZL7hOI6u62w9wM0333z55ZcvXbr0+OOPf+9739vX18dxXKFQePjhh9euXfv0009ffPHF55xzjiiKuq5zHOcfq4JhGgiCIKi6QsYLHbRtm3lHWbjHunXr1q1b9+ijj7I9xhKJxMqVK9///vd/4AMf6OvrK0sUoihKrQzIqLoQBEFQdbUFFo3ieUG9WEov6SLbGIw5SF3X1TRNkqQgMZad6S/MpoEgCDK/YJmCvXRWmqa5rsu2lfFiC5nSYtt0EUI8G4ttcdmOtIQN0RbVFXB/v4ZK8P9Tm1LrN1HsnN6+tmPCV90Psyvyz+n+QpAmsCyrbLKqbMcvtjUX+1y5Kjkajbqu662M7hat*7Wn/xGNxRuneBXDL4DZKMClO4J2eh+Fv7bBAcpwWe72IA7Nbcif6NX7M3+Qp2HzFG8xFeO4xiGwXEcs70EQWBhlt6DxvM8z/OWZbFwedM0ZVlmu2jW2hStY7SkugI+vW0absqG6dKv/lvxNjruVz3erWHLfxyvKlWt5u2R+jatt7orP2ovZI7CcRzTTzzPl8b6szwdZTpJ0zR2kOd5ZmaVvsN1keZVV0PPbVk96+7yXvrBx0RoVJiGxv32mYNegpmyzy3K34QYzRUeUH7/egW5JXq8v1B7IbsBXv5GURRt22YL2rzMWNFolFLK5sbYFmXshp/bVlcQqs57lZ1TOe0RXBVVfm7d+9To8VbapJVZwIDOvabPCXLcp/yAtm/r9e3l/kJ6H8cGXgAAcF0gBNhAwrae4jgOwGXbWkYiEQBwqc2R9mbgNWGskN8jKQHlQJJmVaPIOyORiGzqk1IsCXYUbHDkSZ5kAJbYSlSIN3yJUsXD6sUoTeHoBRMSQkrnxnoktrNJIWrFSnj7hHqfgz/nQUbY0sK9X5XSeov4j8VlyrISn+OV5ffCOBi8vruH/I16Gutafl33nCAtwnHgOBaAxXFAAIACgEWIQ4BzbABwIxE+EokA5RyHENL2BEiqY6VTwPFgGOC4fFxORGIAxJWi6cyUAi5kFZ0nAkDUsF2+a4nsu0yY+rNUf5R+9hkpao34lV+9Mks/VOqJIBJWfi4VyX8sLvMXVeJz3PtV1c/BW9hH/srqlH1opb7NyV+3g3x6Ldz+CtK8tVwCweuLzDkIAM8Th2oAQB3Qddu0iwAOIcARMExDM7O*qoKuA4QcNotT4IfdF1wAagNApcGEP7+zEOnnHyswCUWDO+VSg0/9fSfLNcqaAKQuNsTJlAXaPKt2X/I8A+OD/jX5rxVXbcDui5AmSRtCkNvrkGqCtN5wcK9hXqnx3dX2r3ElToAvEnAAoiDC0AAiAIgGLosSwCcDaADxMDlgIDpZCShv631dcDggCNU1BQwNCpGdsSTOkByv2XH/ePpf/z5sQe+fMnHX3phg6JHBUEmPMg9ZvbjkuRAhO6u8S8wyERaL4xltVxbVQ2XpuvbCzQqfy/0DtJTaIYei0UAJABwATgChsHl8/l0Om27AqGEEDYb5LqOS2jb0+/yIJvWFAEpKqWjEgEhCTD792f++b5jPhiNw6GHvS2SgKKtyZE+SgF6TG91jA5Zm+2Lpwx9rquW329OjOOMWqNzLYdY5+vrSRJKnGS48uP01XwjFrOBAjhgWQblZgAsWYguGFwgSRblMo7NcVTgOM6wp0yrIPLtX4dLQRJ5USTgAlAAjgOwX3zp+XcdeZTrwNXXXvOhk0+ShTgFyOaga7uHdZvOOUqbDnWrG2MdfK4rOJURGcGFb27sC0v44HHtLda3IZHC7Z2m5UeTC6lGwbbAsUAUeR4K+eLs1ARkZuChR9Y9/feHNm54bXwbqIoZlexYVGz/VBeAowNwADy4AA6AZWYzmd/ffe+XLjhfSCzniPCtf/nueGZq4eibfvhfP5+vU13NOgzrusXKkiyEPhR6hdeNvG8ar46dGe+8wbeVa7UiapvqGyRzRyhXrCt/mxJtoC6c+7imCREBAOiGLS///Pp777tr49T01pGlucGh+Mz2wdc2aG96a+KLXz3hQx84IyEm2q0tKBQIRMGMgMhiSBxTF3NZ44WX/v6hE8/84he+bAOM9CfuWXfrnXc8OG9vvjB7oTQgvjS8sLmkG2wMqgxGL3M/1opND6VGwcfxqsI3cblWtG9AUTufSMkTr7Rr2uQ9bm6dWdNnInMLlnyPrcN1XTefzwMAhVgkCiDAly740qkf+Rx1+bvuvmnbjuf+9tf//f9//5enn3lkcubpSy655He3P7TyiGMe/PNTLH0tyzRh2zbbL5it/WoUlujWgxXrQh5cGYAvzKjAa0Do7bfef+QRx43skT78iP0ff/wpAeIuuAV1qyi5aqF6SHPpPcwkVBSlu7s8h0vz*tW2HRldEDToQ1lfVBafq1A/HAXeHmy1XVaVhW+ae3VdI90pr6Nlln1hYZ9DlGBtUP+uldEJTeHcByH4zhCCPvA0p9rmuZY/Zn82MfPOr5QKN5165P//p3v770iqpkZHlIRfpjjweXzJ5/8wVt/fd//vex7535h9UUXXSRJ0vbt26PRqCAIHMcVi8XShb3B8X6VyWQAgK385QU3M5UHF5KDMTU/puSm1r+07UMfXG0ZuU984qRf/+o3mgIugCCoAHo8Vn0hKSEkm80WCgVvZGDLjXebO7Ylq8t/0U8ZVafly+aHfKhafii2TlVRvbHVU4c+y5IaXRJbt1Vbr0L76ttEXcpeJkpbLJQua07+Fq+LemvOwRL3sQ8snYQkSYIgCAQ+/skTFoyaN/7ipr32GM3nDICJZ5//n1/f9EBmElQtA+KOmdmMXoDTTzt5/StPZjKZH/zgB8PDwyxbUisJJjRNy+VyANDfvzPgvlgsArj9g4NAQS04O6a2HvTWt/zX9b/4yIdPV9Tcke9+x913373v8sNUtSAKTkQiuQzYNejr62N53xVFcRyHZSDcbayujj5+ndnhoumrBEklVZnLrqE8653Hf/uYhuobijAhBqy3Lj+qnzlBWOuESsthaoPt7vGtf/nFWPbWNT+4uE96nzoLUgIc6ekPn/Kp/Pa3rLv3ltiCAgdbAA4EFTIFSI68+uwz2XPOOefnP//5QQcdpGlaPB6nlFbuJFIXXddL091OTU0tWLAAAHT6PFUOiIoEeABhyjKUYk7uH1oEnGYariTEVQ1odDYxMDjYN3r7zS++96hU1fKnpqYEQWBK0bZtnucdxylN9dTj/eVPR9d1hTtMtD6l0cQPm8it0N3B0X9mq8PCh9tlrcuPemse4o2hbEjdtGnTD3/0vQ1jd/VJ7uTk+HDfQhDh1c1TpkEffeqhfz6348hjBkwQlUwuKab7BwAg/ba37X3ZZZddcMEFDzzwANu8ynXdRvVWmbewr6+P6S3TNGVpCBKEmjAzYw+NxEWZ6x8SgFhARUMxpDQIIoi8YOcmKSxwndetyTJYgZZlmabp7YO82zBvQysRBJlfsCFeEAQWDRGLxWzbvu666z5/wUf64nsW1L7h4UGQYHxi+923//U/vn3Dh09595qrvmKavATL+/vSikmBB1VJAsDq1asnJiaeeuopZm81Z8qoqprJZDRN6+/vZ368QqEgSdJM0XUBHAGSKQFobGIyA5w6M7157LXJZDIOAKY1ScDmIFY*BwAV4OJiQkAMAzDMAymt3ie321e11B1IQgyL2BbKbIRnH3QdX3dunUXfe00oAkJFheUDMBr8SR54R/Fw9925DGr3vynR37z96dfNoucY0N6IAOc7RoS0wfnn3/+LbfcwrZhLJ1IC04sFkulUtFotFgsSpI0PDycSqVSqdSCBcsFgYiCGImNEG7hIQe/XZBGDzl0/3e+/b2CtKcgiIPDI4nUIEdSb9r3QFGQhBrsv//+ExMTiURiYGAAAHK5nKfDdgNQdSEIMi8ghKiq6hkfhmHouq4oSiphF/MgcxCPRzR4be26u4997+ngwLmf/7gYhT89+IhEwHUho60/6cPHfu4z32XuwSOOOOLJJ59kTj/TNJvYv4ptiAUAiUQCACYmJiilMzMzhqYYtm65mm1PuOb49u1TpvnP1zZvGNu2XpvZaruWoW7IZrdRx3nxf1+mVK8VppHNZgcHB1mYBqU0nU5HIhG2NmA3AKepEQTpaQzDEASB6QZCiGmaoig2EZvKAgdUVY3FYoqixOPxhx566NJLL33iiQfAdYFwQAg4dK+9VmzdNu64AMCJUoQXpY0bX1s4klY0kCT42tf+9Xv/fhlzNiaTSbYwK5fLpdPpJqrmxYwwtRqNRkNsN47jVFVl20iyCTme53VdD/cqVZmYmBgZGfEiofL5fDQa9TYAC6d27a4DgiBIK8iyzPP8tm3bHMcZGhoyTVNVVbY8qyEkSfL8e/F4vFgsbt26de+99wYgpm6A4wBwd91195mf+pTtWNnsLKXOHXfcoavqX//6RC5v2rYjCFAo5GOxGIut4Hl+dnbWdV2mtxqVh9lGADA2NrZixQo2+8Ui9EIhmUzati2KYjabpZQKgsB2PW5UzkbJ5XJMb01OTjKbLx6Ph6u3dofM8QiC7N5s3759dHR08eLFxWJxenp68eLFuVwukUiwgT44LKlEX19fNptlR9Lp9D777AMOlWIJsCkA993vXv7YE09mM7lUul/X9Q996AMnn3zSpz991vr1GweHkmNjM0NDA4qiyLIsCEJfX9/w8LA3y9Vo/LfrutFolBlemqZFo1FWo7DiyPP5/MKFC5m0oigWi0VZlg3DaPc2x6IoMrfk4OBgJBKJx+NMjbGVcGGBqgtBkJ5mdHTUtm1KaSKR8CY4ZmZmWPRBcJjzqlAoOI7DVjv97W9/O/PMM9WiEUunTEs7+YMnPP30s0NDQ88884++/sFIJPKlCy66+3e/AwIHHXTAE088IUkSBSsej9u2PT09zdyG+Xw+lUo1sdaCEKLreiQSKRQKrIRYLJbP59k64tZJpVJsvfPs7OzAwIBt24IgdGCGiLWzaZqU0rGxMXYwXL2FDkMEQXod13UFQRBFcXZ2lk0ssTf6RsthbsZUKuWlrnjTm95kmmahqIHLAeXX/uFBmzrr12/ca6/lhULBNM1rrrnKpZbrWuPjW5ctW9w/kIpGRBas+Ktf/WrVqlVMQwDA+Ph4o/JkMhkW5ZFMJhcvXuy6bjabZaWFQj6fz2azpmkODAwUi0W2JKAz2TSYgoxEIsuXL9d1PZPJNGoi1wXDNBAE6WksyyqLy9A0TVGUoaGhhsphcRCapsViMdd1WaqwSy65RKD8//nX/xtPxKgLilJIJJO5fC6dTrNJmqKqxGPx1za/umzpstM+dtrtt99xydcu+e53v7ts2bK1a9cuW7YsGo0yl2YTVWN+QratpSAItm2H6M1zXbd0eHccR9M0Fs3YVgzDYEmnGKwZQ78Kqi4EQXodSinzrRWLRc+fxuaugsO0AtMWxWIxFotxHDc+Pn7Yoe98+OGHl+21JwDYFlV1JZXaOb6vX//Svvvuq5uaLMkAsH3H9tFFowSEm2666f777//Rj37kGUlTU1ONGoIcx1FKS2vE5r2aWCJWFZ7nXdd99dVXly9fzlSXbduyLDfabo3C2plSyuIbmWVZps9aB1UXgiC9TiaT8XLxsWA5FurdUCEs8wULdWMG3JYtW5YsWXLN1dc/8MD911133Z57LgQAxwFeAMdxDMOIxSIAruM6ANS2bUKIJAobN2495phj7rjjjsMOO6yVyHgGU1ezs7OO4yxYsIBp1lAajVKqKEoikXBd17IsFqNBCGkiZ1WjKIoSjUZLM0aymbYQL4GqC0GQ+Q2Fz3/+Itd1v/3tb46MDBSLuijxsizati0IHICrG5ogCALPmZb5yiuvfHT1Jy+//PITTjiBzRuxJB1NLElGWgHDNBAEmddYNnzv8sslWf74Jz/x7P++lEhE8vk8S87LTuCACLxAqfvb3/zmrDPP/Pa3v33kkUeyPzFLwjCM3WYzkbkCqi4EQeY1nAjJpHTNtWvOOOOM44479sOrT5udnZ2YmJAkqVAo2JblOO51P/zhAW866Le//e0Vl69ZvXp1X18fW37LSiCEdGAzEaQUdBgiCDKvmZjOpVIpSSIAYOr2z372k5/+9KdbNm/SdX2gP00p5Tg45j3vPf/8899x5BEA4Lo8x3Get5BSypJWdLse8wtUXQiCzGtsAAJQVHRJEiRR4AAMw4rIYj6fV4p5SumCgUExEgFwqW07tm0Twdtqywt0bHeKCqQMVF0IgsxriqYZYTlwARzXETmefTYMgyecwMwp1zZUTZIkIoqwS0t5hhfbP6VUnyHtBv2zCILMayKSZFgGAERE2bZt4FxREHcGqVNwHYcjBDhBjr+en4nF6HtB9mh1dR60uhAEmdcoliaLMrO0ADjLtjgASRAppQR27atCAejOM4B7wwLb0FcsIUFA1YUgCILMMf4fUUk8V+BRqywAAAAASUVORK5CYIIA" alt="" title=""></p>

<p style="text-align:start"><img src="*csrWq2Lz+JLl3VQ6rT2ZG0zn3XLab+NLvY1yrkeVtyHVg/MH5mVb8AIFVfi1hY8KfW04nut2Rf9xZj4Cj61237K8EOztztM+5N0J3Vf5RZFeVnn6lUnaJe4vnq/KB3uL3DvGXGVm7ZTclUoASirbw*u2HzZmEXss4r7cttmX2bhWQ96aXje6uUdmJSawpvgZbRbRCkFO8GjBAofYWT+Ap3Ptyiva17rwcu1fi0AL0/N2Q05NVle49L7+1DqcWeBsnWppN9uPVcFSvpb8IgXWzDzfF9dqy/ZFk52xVbgyN2l2WUmU2mlNcf9ieY9ObPhTp+SRwug6ONWj03IZahlnuk+/vArpSKSqcM45wEUj5czXR5opV7vtFvn1W3en1pej0uuyYLKvg8BhJZ2ME2ewabkXX47ZXiLAsw3Z745eevjvWstimz94nuOzcv4Ik2BexxFVr/Xzr3+Tm9SsfqXkpKrnqX2EuTF3eeTtaql1i4u5RfLDegy4*lY7I+u6I4CdPunrXXK1GrM1tUSPkefULO5mTqJ48OWKc5m7V1Ad4iv/1DVj1aIk+190dQuGz9kkex+RWHswFepJn5BuQyoXx1ry4TFUWfN8oa4VLZN6lAqmqI7Vd1uSjFvNNXgUfTRXnc3of27j8K51fBquTyArv8Tj22y9e3gfFitQRzkGa6ozy2Jdhb5DI15bdLLGmP5L1wX97ywLgptgC3SXPKB5Bjro6sKPZ7LlXk0mq/QvA+51E6/Fo87qL20kd4kZLHufe88zfu+J1Qcd7Oiwnr5XPheJzS9ts1e3xqWV8Ae+yfV6TVMKrz4ljOeol7kLAtAS9ycKlSKd4iL/Ep7jNbhfjP3AXiS7ZFIadic/7g/Y6CM4OpilVdv+SSoLtPIE0I7qVlCi3tRuWXQIGuTi/nBLiFFw9+3omfrKW5l+neUvcBskeZFF2rFaLaPdbTffLV+cHZGXl3ylX8t19ccRXFngj2FnkcKOT6Rfi1pYK5RnxVtZJRkbnGES71zhwO5PUiBltY6t16K+n0VdoAxPZl56pAdZK1c887vCoRWWvicaTpUtusnazL6DKvTPIWEhhfAS8exeiXzBcg8xftsZ/1GJVTilYEoPAJby+T64W8Rb5WfztdR6VYTeGrVmUOJsgfFVlIU9OCYfwGlfq9e1H8vAU23MuSkQK9ncXC4zxBpYIy0s7JOvzMXF/l0ZIL5kxLO15BrZarsSV9nQKsoyjE2ihibYOd7G5VZFX8XijkLcqrG7LqMF/TrgV6kj0+ylJbbKXKFZnVfCkcL/1R4bewyfyziMJx+uudf2atTyma4HLHrJ9LIaW8jyyXd9d7E/KWGazCFddqwW4R4KnZPV3WlzbrXUrRXr9vF3cl68ku4nK3jwO/9l7m+737Bp3zoLkE4k+M++9ZgzHG+I4NvtpXNNkGpiSKza5r3kl79yN5L8kqxALFlFfrFF5+4G9L14Rcw89c8iy1lNJqlXZrL0HPLio5wBxAZuF539UAnV0RRZfrFgFejBJVpvpx0YVpIwP7oC/bq7jRtk69lVkx5xHvvej+J3ff0s05f6pr3/6yybYoFC1XZFqli74uIdh4NnDn4uvbks6T+1XVhShOL/43v7fwtdLT44W+VpL4kkBeyhAYVaKowgDiyuUE9jVtVpR45mL5Y4pFpjvR1+Xe36ICA8vdD6bVJ+tqxTsRQhvQvDvnZL2kaslvsWUOAXJZkV4GC06Rpd3Fb3fp5cy8A67A3UdaDHTaC1FE+7o8H*0IGYXkQa+hftb5PemXvqU4v720lw97o6dAsehHqfZcTaK2OS0PKIeb5d3MJ7155+3WF8/BJwPX3LIO0uUVc/lmtz1/halXZXLmVyUB532sM78uf+eNRg/hubu35/rkgK71hIpyKKlKSt6UqJSp1ArMKrVS7GFyKSIlGIxqcdbBG6dr6FPsK+8l5BXYgUmvgv2qheenCnAi1EKCknnWNybupzgd6+AXEGA3t+ioviosg5VvRe7/541c+/aghC66HvdL2UYbeWRbTAmanYMgUAgEAiyInbQFggEAkFNIRSbQCAQCGoKodgEAoFAUFMIxSYQCASCmkIoNoFAIBDUFEKxCQQCgaCmEIpNIBAIBDWFUGwCgUAgqCmEYhMIBAJBTSEUm0AgEAhqCqHYBAKBQFBTCMUmEAgEgppCKDaBQCAQ1BRCsQkEAoGgpvCt2Eq3cWpRdv+rSOEez891Tt49BsvZ8MIvFAgEgsqSR7Gdnb1biTY5TNvb3ovGsrejrbRI8lP+Sk4IsQgEgvIjV7oCVUcZtrT2Ugf7c66d19O+9btJbuBNdatHaIXs0C0QCGqY4iu2zHF0lXQ9WQf4WRWDiymQdat196uyGmruM*lrnLtNx9MyLnuEkCwlXrEQrcJBIJMiq/YMvuaXF1PXl9cVmPF+/mZFctbc/cTMu0k9wbmLdku0OMUnVO2eW+atXCXS3KJV6gNgUAwsciv2NzVSYG9nov+czewPJ5fhdjV9qhjbO1iX+VR32TqP3cR+dXWvk4rHcJoEwgEaeRXbBO3y8j043lsly9D0EuvmnmOu7fTqYqyFu6ltIn74AQCgaAQajx4JK8PMO+FJTIEg7lqnSc7r/LonPQrBIFAIJiIlEqxFdFdWc24h+M7FY+L9vJoETo9kEVxvmUqb+HTEwgENUCQObaiBGJkLXxi2RBp0RzuTXM5IesgwFk4/J+mh3JF*TW0HuLxHyVQCCoAYLMsRVR/fgNBvGrCEuaJyWAAki7Kk11eY+NzGyg92hJgUAgqG0m2BybL0VYSP+eN81VSZVHpv5zuiLddViBVpffCytu5AlFLhAI0phIis3vWrFMBZAW++5SoHvwSOGroQOse0ubscss0301dyYTy/ErEAgEHnHLFRnY21ZtnaZTEzinpvIGfRQr8gWfgZ+hKI1K++y38GJVxqMTtRQIc00gEGRSkswj3k8uXfBIcbs899K8LB4oVn1yGXxZp+6clc/q3sz8HEx0FXFICq0mEAiyklOxlafXKERbuJBZ+bQlXwHq6SIQL1GR7td6MXq8J7jKFaJSlMa6XBVAsIUgtJpAIMiKGPMKBAKBoKaYSMEjAoFAcLbgsDgYQ4xxxpAkIULAc4MQQoRwhCin1LIsizNJlmRZxhgzhBlnHHEJSwghRilGnBBCMEEIMdPCGGNJRliqdCNLhbDYBAKBoPo40zHrukkIkSQ70A+i8+AzOzU0EImEFU2ljFFGJUmSJJkhbjEKIIQ0RZUlCXPEOJOIhBhnlCJMJEWrdCNLhbDYBAKBoHohhHDOLYsihBRFQghRShnjhBBJw*mWZbFMZIVRZZkhJFhGpgQQggiCCOMEGKMMYRlSUIcmabJLUoIkeRa7vxJEcoQCAQCQXE5E0ymKBIhmHMO3sgz/yPGEOc8HIkQIjHKGWWMcYlIiCNKGeeIEIlSpsgKRuS0/ccRZ5xzhIlESC13/rWstAUCgWACA7qNI1mWZFninFOGOOOSRBQFc84ti+mJ8ZShG6ZhmCalNBqNhiMRLBGGkESkeCKhyKoiKxhjxphlMU0LYYSpZVHKJFKzc2xCsQkEAsFEgUvymQk2jii1tm3b9tZbO4739qQMQ1XVcDi8fMWK5atWdkztIIg0NzXrpo4xl8l7uno9leIIRRWl0s0pFSJ4RCAQCKoXy6IYY0kinHPTpJzzoaGht97asXHj05s2bVq0YG77lClNzZMisRhCaGhoqHt/dzyVbG1rW7ly5fve976OKR2aolBKOWOKomCMjWQKESLLSg1PswnFJhAIBBXF2Qdn5GmglJmmiRDXNI0xvn379k2bnj106FB9fcOiRYumtLU01NdHohFF0zjniURiYHDweG/Puz3H+/v7dV2/9dZbly9ZGotELcsihBBCmGnJsiwpCsI1O80mFJtAIBBUlLQ++L26zTRNy7I458lkYtu2bdu3bx8aGmptbV21atVFF12kSBKEPnJypjPH6NTIyJFjx3bt2vX6668pirJyxYrVK1dNnzadc444lzBhnGNCFFWtdMtLhVBsAoEgD84s2xBNB8EIlU13DrdmjDHGZFmGzxAfX2BLnY2CpWCSJJWwq+Tv1Wb4z0cRQrquE0KSycSbb27/6U/vmzx58tqLL169alVbW5thGKqk6oaZSCYxxk2TmjDGCGPKGOPcMIzDRw7fd999I6dOXX7ppR+45gONDY2GrsuybJkmx0gLhQoUlFPUjDHOuSRVRUBKzZqiAoGgWIBKsyzLsiz7iGEYpmlWtlaMMdM0DcOAGlIKXXpwMi+3LMswDFBv5WrYe/7SNE2SyPHj7z777LOJRPwv/6+PXHrpJY1NDYQgVVUsyzpy8NCLzz//2tat9pMyTdO0TC2kLZi/4O67725ra3v55Vdee+01xrmiqpwxWVE0LbhWs8cTIDH7Q1ml5IpQbAKBIA+g0ggh*qC/kilUpIkKRUKq4M6gDVDKdU0DapkL2cOXDIhxM42rus6Y0xRFM75yMhIRVoKzR0dHdm69dUnn/r9p27/1MwZM8KhkCxLlNF4YlyWlA0bNt73nz975tnnRkbGLIsxhmRFUVUVXJSRcOTmmz4UiUQfe+x3w8OnOOeIY24xZhWkhCRJAuMMJE8preD7kIlQbAKBIA+QgdAGIaQoCvRrjDFcIRBC*pqZ4ImYFcK+6tg2BNaYPyBqgNlaZqm8xZFb03GPzjIMUYvvPD869teu/XWD69csQJhTqnJmKXryVBIi8fj4+PjPb093d3dvb09GINLEFkWSyRTyZROGZ87d+55q8+LRCJPPfXUyf4B0zARwVgiBdbYNM14PA7DHUJIVVlsNRvuKRAIigX07OBxIoSYpglGEqW0QEUSDMZYIpGIRCKyLIMSUlVVkiTobRljatCwCLDYMMaEEAiOp5QSQiKRiC2E4reH4/SIEQweSYYQTyTi77yzZ3R09PrrrmtqakjpKSJhhBAmiCC+efPm1tbWRV2LhkaGX3nl1c7OTllRYW9jQohEMCE4FosuWXJub2/vH//4x6uufJ+kyJxxZlEU9LnZRi1jzB7fVNX+0kKxCQSCPBiGAdEZziE5TK5UKlgAZte2bdvW3d0NViMcpJRyzgvxiUFRdt8Niq21tXX9+vUV6biPHDk8OjY6eXLr9HOmY4xDmsY45ZypskwpfeutncuXrdDC4Y1/fHrDhj+sW3dpx9R2RVMxw+Pj8Tff3I4QWnru4o6pU6dNm/74479LJlOxqCVLUuEZtQghsiybpgnbN8KYwLIsuQqWx1W+Bu4E2PGy1JeUbgvWzJKLfq8y3CJYsSV6BJk7iRe9pWcDqVQKTBbo60OhEPgnJUmyJ6XKCSGkvr4+mUzef//9jzzySFtbm/0V+EgNwwhW*2QgcUDRurY2FhbW9u6des0TStLY/kZWwojhHbv2U0ImT9/fjKR0FSFc0YpxRhxxAYGB2RZmXbO9PZpU3fveeehRx5+Y9v2hsaGekWxLKu/v/+hhx7u7+//f/7uCxddcGFba1tb6+Tdu/csXrSora1VlpXAFhvYaoQQTdNgttUeDZimeRYpNpe3ofx9Tdb9tSdcr5f3B+Zsjl995vHX67FMv8e93HfCPa8JTV1dHXyAEMFYLAZ/UkorMkKHjhX069VXX/2DH/wgGo06vy2kcOidk8lkLBYjhFBKf/nLX95zzz2hUKhU00icvNcVyZ2uyL6+fozR1KlTGxsbEEKJVEKRZVVRe3qPP/jQQ83NHSE11DF16mWXXfbi5s1bt25dvnKFooYQ5l0L5//wB/d8939/r66ujhDc0FA/berULVu2LFw4T1NVRjnnAd2qpmmmUikYXkQiETgItnKogCUERaR8b2Surs3lT5eDhby+drfofvfMFS0uVSq8k/XbU/s92ZftUlV6KNcLkPV4NVjetQcoMAh7wxifOnUqFovJsgwev/JbbLBeStd16EnD4TDEj2iaVmBg3tjYGMyogVYDuwRsUwj8K0lj019DiGeEiTcej8dlWWloaNRNA7atwRghjE72n/zl/fcjI/r97/8wHIkkU6nu/ft7e3s/eN11HdM6CCGJhN574gRCiDHMGFIUJRKNjo2OUsqSqRTnPFIXDlZfmIAEP60kSSMjI+Fw2DRNXdcnTZpUfPn4J49iK/OPP5iXLPNVy6qiXG7ncqPM46Vwsjnd+pl1y9sQv7LNlHPht3BXnMWquS/vosu3Qqv5ghACc2mc8xMnTnzpS1/SNK0i7hYnlNLXX3/90ksvhT8hfgQWcgVWP+BsBFKplKIoMJXY29v78Y9/vGSRMvi9AeoM2dvMILRr986LL14biYQR5xjhkKZijIeGBnv7ehctXnzx+VeFIxFZkRPJ1I4dO3/605/ueGtH5+wZUzraFSQ3NdbDNJhpWpIkE0Kee+65I4cP1dfVc8QZDm59*qKMTYMA5y3d9xxx8qVK6sn3L/yztCi4OJ2c76I9le5zq9gf5dZZ5eG+CKXYerLjPOunl1qm7WNLpcU6OospC0CJxhjWZbB1zQyMvLggw/edtttLS0thaiQQgDtJUlSJBKxPSt2uAfn7Mz+YxiSK3GEMJEoZZhgnBE14QxJBLcq5FWxY1IgMmLKlCmlE7BDsfEz/05z7NhRicjUQhgrGCmMcozR/u4jb+3Yc8P1H1q39sqmpibO+Xgi3rVo0Z/+9PTGjRvmzpvd0dEuE6wqMuYUI4Yxp8wyTb21raV1cmtDfQNCiHIrsPwVRSGEwNL43/zmN+9///svuOCCUlm0/*v2CrVC2R2fECBY/9MbZFmymSdjspaN+9VqmxPav/ynT7YotfHfUqv8EvcrWovT81X3QROMhXYnXfeuXTp0gLzVxVSH3CC3XXXXalUyjRNVVXBbYgx5oyazJAlCRMZccQ54ggjzinjGGPMwcOHHCrtz++DHTxCKQW/K7wtU6ZM+e53v1sR4d977719fX0nTw4RrCIkU2odO3bs2Wdf2rRpc+fMBZRTjjnjTNdTicRYc0vT5hefn9U5Y2r7lDlz5lDT5NRSFUmWSSqVGBsf+cC1V19//fXt7e3gYg1WJVD5djKzP/7xjxAfWz2bl7o1LOtEVDnJ6gYsYvm5dGemtnP5Nu8tgsnQ3Y3mV4Ze9HdeQXm324qu6b1MCpbivoLqxLYgQ6HQ6Ojo/v37m5ubwWjjnFtGyoiPROrrMZERgtXOEqWMSBLliHGEyZ91GeYII47Re/wWkKYrFothjMfHxwcHB2EaryITinPnzu3p6dm3b99VV12FEAqHw88///xTTz114MCBr33taw888EB9fX0oFHr33Xfvu+++np6eWCz24IMPMsbuvvtuWBSRSqUMw4jH4/39/WvWrIHQm2qIXSwdVdo2v2+PlyAUwNnRF0VzlIisCsn5VWadfc0nebfenLrZu/7I1aJg2iXXOCPX51zjCaHVaomBgYH+/v7HHnvs+eefTyQS9vGwpjTXRwYGRi3OOUKapqkh7dTIaH1Do25ahmnBdAScjDlzKjYw+2CuTtO0ZDIJimH27NmVGuXPnz9/06ZNe/bsgYBM0zRvvvnma6+9FmzK+vp6yP41f/78f/3XfwWbFUJG+/r6vva1r7344ot79uz51Kc+FY/Ht27d+s1vfrOjo4NSahhGlUQwloL8iq1Ynivv74TdK3m/xOMcm9/SihWP51F/BLvQV3PcNUHWWvlaGpFLWRYen+L+HPO2pRoGK4Li0tDQ8LnPfe7mm2+2YxYgKbOEOLJSkhZilGIsUc4tyrRQWJKVlGFSziVJgtcBI0Tem/YDnGyU0ng8XldXB6+NZVmhUKhSr1BTU1Nra2t/f/+ePXsWLlyoKI*qo2NjWkDdDieTCYlSVJVFf78yle+8jd/8zeNjY2JROLAgQNr166NRqNVkoC/pOSPiizWnbyE+6f1SiXqnrJGTGR+yOWEDOBG8ysfj5d41EZZAzQ8hptmPS2vEIIpcveZy1wmrJcIzIo71QXFxXamLV68eOHChQihUCgEa+wkSVIkYhlxhJAsq0SSKOMW45oWTukGwgQTCRGCMcIIYYwIRrDsHEo2DAOWZuu6DgvX7NulUqlyLdB+D6FQaNWqVYODg/fdd9+3v/1tTdMgFlGWZcjhaVkWxhgCNyCmA9JdRiKRRYsWgRp77LHH9u/ff/XVV0ciEWhgpZ9hacmp2NJ6/wJv4zGYvtRTIIU0xBlR6TGYsCgyDCCQtBpmqoQ0+ymXieNXdfmKWgz26P0uyBPzajWMYRjQj4OhZtsukiwRpOq6zjjv3rv3wIFDI+Nxy6LJlHHu0iVz5s6rb2jMVabtioR1x/ZmbJIkjY2NBU5BWQgY466urqNHj/785z/funXrokWLbPPRti/hTNuJ6tyFhxDy5ptv7t69u66u7sILL4QFeRXJ8FlOPM2xFcUhFmCs7ct76eXCwNO/mcaEX+vtvSdv2LDh6quvLkSc/hRP+QPiSxeB6bfkAtcwCKoQMFDsiHwAttQ5vW0N51ooZBrW9je2//wX97+xY0db2xTTtK665gO3fPjW1eetPm2xnQ6K/PM7YK/PgxfMjv6nlFYq2oIxFg6HlyxZsn79+gceeODmm29evnx5Q0ODvbEnTKrBCnpd1y3LCofDECYqy3JfX9+DDz5oGMb1118/derURCIBvkoRPJKOHUdQ4L29eLSy3tr9zKyOuAIzX2Q6sgrosjfcga9BT/FC9JqXW+fSbVkXPATQgl6GKSXSHCKllgAhBGm0IO4fjpxOXMk5pxRR*jarX/5lwalScN44omnDh46/IP/795Xt25dvmIlIYRgJEmnZ9dsa+90XKVlwU5skAEZAtmdWbvKCbgcFy5c2NDQ8A//8A+/+tWvGGOrVq0yDAOSZDq3RoNITtgjLZFInDp16p/+6Z9UVb3uuusuvPBC0zRjsVjgRJoTiOye1rQ4+Fxh8d5xn60psA0BskN5qbC96jOXHeke4ZJbhlf/uPt7XdnO97ibVLCoQru2XjRiAHGVbWbLbkXNu1MEubB3RwMTTZZl2BQUpo4o51hVsapyxgZP9jfW17//qvcTQsLhcENDA0wyYYyc00ww7QTWHphBmqbZKo1Squt6pd43uK9lWZqmffWrX505c+b9999/7733Dg4O2r0KVB4sNti45+TJkxs2bLjzzjs7OjpuvfXWiy66KBwOK4oyPj4OWrCyu5+XmuwWm7uHsLi58yu4AilAysSsgYVZTVi/QnPPlpI3pMVjmbmMswJtoKy631lyUWJN08pxEX6uSgpFWDM4k1zA5z+PHTnH8D4Q3NPbm0ymFiyYL8vyG29sl2WptbWFEMQYl6EAhjjCGHPI5myXY4dXVHz8ZM/z1dfXNzU1ffCDH3zjjTd6enoeeOCB8fHxtWvXtrS0NDY21tfXS5I0MDBw5MiR48ePHz9+PJFIXH/99YsWLZo3b15TUxP8BGRZrsiGDGWm5G7WYikkX3MqXkLDAxiRLpf4acqGO+be9RN01+6n+I+vzl6Cr8XUeU/I1AdZ56gK9+/lCrlM00ABBkYuck6bNy2F+S6oNjKVDVghpw9yzilClHIsHTxw8OWXt1gcHTp8tP/kwPwFCxcuWIAxTibHHnjg0daWlmVLls6YPp0xpuu6nRLTBtRbNYQRwh4xCKHFixe3tbXt3bt3586d4+Pju3btguqBxtJ1Xdd1SZIaGxsXLVp05ZVXNjQ0hEIhmJKEmUih2IpA4Ol9jwuTi3VTl1Qjfu+ej6t/zPmP/VxQoPMwlyR9SbjAMI0Cd2MIdo5QY2cvhCDLMozUsaNH9+3bN55I/upXv/7C331x7ZqLZs6azTlKJZN/2LCxpaWlqbFxxvSpJdkXu0g4Ax1hvdq0adPa2tpWrFgxOjq6ZcuWnp6ewcHBsbExznl9ff2MGTPASmttbdV1HXyqcK29P3ilsqiUjVoOjBEIBGcnmHMkSSMDg/FEYt26S9decslfffwTN9xww9Rp53DOEeJaKPKlL33pjTfeCIfClFLGGMSGVKG/2ulrsfWT**qjY1Nc2YMQO0clabMhwO2xfCfKSzzGpraRERik0gENQWjCPLQrK8/8BBgvHU6dPOmTHj5ptvfvnlV6Kx2MzOmRzhkKakUqmRkZGRkRFdNzVNgXgKO8KwejidTsWRYhjiNmGzBU3T7O1PwRsJqyBA1UFMv3OnAqCGVRpQ4+vPBQLBWQcE8nO+9dVX6+rqli5dFo3Gli5d2t3dfXJgkDKOMEYYGYYRiURidXW*oBBA4qh0rVPx9a1zg16YNNX2BQNPsNadVufQSAMpRT0n3NW8myIKK66pygQCASFYBrmkSNH/vmf/umRRx596aUtBw8e0FRl0aJFR48e/Y//+M+nn/6ToZuJRAoTzBgjGMEHj4ttyg+E8sMqbNjKHJZmA7becqpkewGAswT4k52h0s0qsdAqXQGBQCAoJpxzyzB6e3rmzJ3b3tGBMVZUdWZn56pVKxVFOTUyktJNPaVvfXXrzp07Dx85Mjo6enoBHKVV2OM7I0dcjts5tAB7Ns4mcFjyRETMsQkEgppC0dTOOXP+97/9mxqJEUw4R5xIqhr6whf+jnEUTyYpsyQZb978omGYPcd7hoaGJzU1waJv26FXPYCWApej83haPdNCnZ1RMDUfKpKJUGwCgaC2YAxZlhYOY4kgRCzTNHUjEo1RahFJ*uLMIYoq/vd449Rxi3TlE4n4aIVSd6flzR95owNSdNtdo7/zPMzl+jVNkKxCQSC2oLIWIudsVGwrEiSzBFCqiJD6AUnXCEIISRJWMEKxsiZ77j89WWIcsQRIhhhzMFjCN9whDjGFGELIc44MkxTkUKSLJsWNk2kaci5mVzm0nUI8Xfqv7NEvQnFJhAIagqMMcJ/7r7Je/O1pmsvqepMtDSoZWJscc5Gxsa2bd/+3KbNfSeGlixbffEllx3Y333V+y6ti0VzLb/zuO1J7VFd3mSBQCAQvAeMEcKmZZ440fu7xx8fHBoMRyLHj/c8/vjvd+/uNgzTVwr1swSh2AQCgaB6kSQJEWJa1qmRkTd37Ljhhhv+8R//cc2aNQf271cUNVOROTcarXTdK4ZwRQoEAkH1whFn1OKMaapaX18fi8RCodB5q1eFI3W7d+3BKEvixz9vJn52zKhlIiw2gUAgqF6YaTFKQ6FQS0urYRgf/R8fe+ihhyc1N1x00Yq/+qsP19VFz2bLLBdCsQkEAkH1gmVZVlVJlpubm7/x/35jzZoL77//F7d/6tP/9V+PWpZE6XtWZAuAaldsAeZCSz19WoryM8ssxcbTZWhIgGJ9ne/95LMq5aughiEIWaZlGmY4HF61ctUnP/mJv/iLv5AV9fHHn/zv//7d6NhYWpYsEUhSPsWGc1P+NmNvlL9ixap/2*ZlxddOL42xS5E01ThriICQWnhHDFmGMbg4ODuPbtXrlz5iU984uabb66rq3v44YdHR8cyzbXq78RKTfmCR7Jayl6WWeR6PIWY3t6v9VilAjee9nW535Od5ee9V67HFKyBBe7K7Usv+nqmwm8TjMxYu7NNkpzzgYGB8fHxmTNnFssZwBHnsBYbZS9NVhUrGd+7b++fnnn2tv/x19OmzVq9alUqZX3lK//TNAzn9vT26w1A8IhhGIwxSZJgEXqx5JD2p53TqxoUanaLrVK2C38vmUeyRrJm1tZv/V3OyXpfl8pk1irrn2m3zlrbYj0Cl83Bi3ILd8VZ4Pgjl+Szfpu1Si61FfgCsss7n3U1dGFlxrKsn//855/5zGdSqRRIo/DAesY55YyhHPmXCTYN09BTekrf9Oyz+/d3j42NjY+Pj4yMNDU1EYnAvjZpL7ZlWalUCj6fOHHi2LFjp06dgocI+wMUUmHYagA2+oEjhmGYplk970N2Be53mF9x0vRc2p+VqpKzJi62S2Zti9WEXAaxr+fr5ennndDK2kaXSzwqKr9vZvW/ydUJ7OwF+QYJIaFQCPa6zExXWMNAPkl7B5lQKASSSSaTjLFIJBL4p4oxJohgh5nBGGKUc2YhTAmhsiI3TWqeO3fOJevW/exnP/+3f/v/h4fHm5pav/XNb03tmCpJEqgrSqmiKLATmyzLw8PDjz766EsvvbRr166Ojo4bb7zxpptuKpbdJkmSaZqpVArkoCgKxljXddjdu9LPqorXsWV2f0D5O6a8U0pV21c6XRPO/0txF1syXsr3dYnLCVlb5OLArNonVf3YHbphGJZl2UeqZ5BeBmCfM3iRwLkHfbrtfwuo2BBmnFFqWTrDCCuyIkkSIQjBoIGgZDJBqdHWNvnWD996+PC7o6Mp0+RNkyYtW96lKATuLssy2G0HDhx48803d+7cuX///oMHD7a1ta1evXrZ*Xnnnsuxjgej4fD4QJ1G6UURAHl2PuaVs/KuepVbFkVRkV+Rd7dXC54v8rdjea32mml+dVtTleqF7utKOf4Ot9ji4RWKwR7z2WwWizLsj+fPWnjIaGwnUQfDuq6DjaQZVmFyAEjjBEiBCOOEUIYISJhzgljFDGGMcKEKIqyqGvRvLldlBIsKZI*QYnhCOEksnkyZMnjxw5cujQoV27dh07dmx0dFTTtLVr186fP3/Z*WdnZ0NDQ32xmzgRA1cYXgB7IbbBYJyrfSDQnkUW9p2PuWkwJDxAPNqpTDCgllIWRWSS638zid5t97s03zpj1wtCqZdck0Q5vrsrHNe0Qm8A7My0BtC/w5TNWCvVLp25QCsNFDwdg9uTzrC1jDBSqaMcsxlWVFkjBmmlFFGGcMSwZxxhJimqhwpjDHGTEnSJFnhSLIoN00+Pjo0ODgA+mznzp0HDhzgnHd2dl522WWrVq1as2aNZVm2RQUuU4yxaZq2ng4mCrgcVBo4QuEI7GlX6WflqtiKO8fmawWSPUL0eEmAOTYv3rASReV5LK1wsed6gh7bnhkGkleJujsGgzXH/TXI25azyldWOqArlCRJ07RQKASeqOIG2lU/uq6rqgr+WHjbI5HI0NBQPB6PRCKTJk0K9rJZ1KKcypKCEKIM6TpllMqSJIVlSZZ1Q0+Mj3FuhSNR3TQ1FUkSNi0rmdKTifGXNr+w+cUXt27d2tvbO3ny5EsvvfTSSy8999xzp0yZomkaWFHwo6CU6roejUZtWy3wT0PTNPtzJBIBz6QkSZTSRCLR0NBQ6QflzRVZ3E7WSdbpK2fARd7zS0pWJ2QAUbhfEiBOxKM2yhqg4aXyLnEuedvixRB0P5I1rjKryswbgZnLgBP4AmOsaRpERaZSqWQyqes6fEUprXTtykc4HLatHHipLMv6/ve//6Mf/WjhwoVPP/10MBtIkWUFn7ZyOEeaJhMsI4QQR9QyNz3zzO7db8mqtGjxuevWXSpJoZ7ewR07dv/pmecefvgRPTk8e3bnxRdfvHbt2mXLljU1NYVCITAowVcMFjalFPzG8MhM04TZwWByME1TlmUoFgqByEyEUF1dXaWfEirfHJvL5L/zz4pPhHhx65UtZDRAsZmhmJnh+LlO9iIEl3gN727SYA89gNgr/jrVDCMjI9FoFNxZmqbV19fD0qhqiH8rM7quQ9shIFCSpEQi0d/f39bWFjhG1OKMccooJ0g6PQmGkJ7ST/T2HT164LlNmxChkkye/uOf9ryz99ix3u7uI70nhhQlfO21152/etG0aR3t7e1Tpkypr6+HZ2T3VIQQwzAURYFw/FgsBneE0wK7IlVVtSdZk8lkKBRSFMU0TUpplbwS5XMjBBhxB8ufVHhii7yWovdpqlKYC74UT/kD4ksXgem35ALXMAhsoNtijEGHaJrmvffe+9hjj4FZUOnalRXG2Ouvv66qKrTdNE1CiKIoJ06c+MpXvhLsx045RZgTSSZI5pQjhBDHzLIS4/Gh4b4p7S0XXrhaUaVj77675eUtp4bHm5qmrFt37qxZc5ctO3d257RoNKIoCtTHHsvaiw7Brtq0adPTTz8NWkdRFJgYK1AUMOlomubx48chUBbCMiv9iJBXxZbVwVX4C+3Fr5VZk7xnZq1tgfkvMvWTr467iD9+LzfNpdsyJRNMC3oZoJRIc5SuZIELkUgklUrBmlzOeSKRGBsbg7CRs+dZ2BvB2DYK6DmYXrIs68SJE8G6dcYZJliWZYwkPWXA9CVijJrG6Nj45PY2RYtEIqFJk9oQwkuXTF+8eNmCBYuntHeEQzJnFCzFrA8CrGpKqWEYp06dAmUWCoUsywJVVIgoAIxxIpGw42OrWrGlrckoSuRIsDkbL/jKEeUrp1RWFZ7mkyxcPn7DagIIx2M9i7WMoUQWmzM+UwQ6lhPOeSgUck6nff3rX1+6dCmsZqt07conBFiT/u///u9PP/00vH6gUSil06dPv//++wO6Is+YOwihVColyzI4DwcGBnbu3PnII4+88OKrkUjk4MGev/3bv12+fLksy4wxCVsYSeSMLkmLtgNtB9qXEHLjjTfeeOONxRIFqHPIvCzL8tKlS2GOrXrms3NmHnG5puihE+WfL/GSxjfraDRreKF7P+tLnaSFe2SdM/Mik6zqOatxVqAGyuo9zqX4A0eZppXjS1tXT/46Qc0Ar5NhGHZcRiEx7vbaL1gzAIUrijJ58mRZlsfHx3ft2mWa5kc+8pG1a9cmEglZlkOhEGNM13VN08S7nUnJ59iKpZB8zazkzT0ROO48b06sAO3K9WfhIYiZ+iCrLVW4dZXLuE/TQAGGRC4SdhZe9NGYQJAJhM4DYLJAcCBMNQUu1k5lAtlMQFlCUH5TU9MVV1yxYMGCVCo1a9YsyFxlY2tBQRolV2yBJ/k9Lk/2ddMiaqDyUKDzMJcMfcm2wDCNQkRXxJdHICgcWIZsh10oigK6DZJnFlKy7dgEjWVZFoTUq6ra2NgI82TRaDSRSMDqNF3XYdl1pUVSpQi5CAQCgVdA8cAabZjruuiiiyilra2tgcsE+yzNFLMT9kPWLlgYjjGG6TdYoFZpYVQvQrEJBAKBJ0DZQMCIaZrw5/r169evXw9J7oNhp1S2t1KDlC52PD1oO0j7Ylt1sEZNeCOzIhSbQCAQeMJO3gHuR0mSUqmUJEl2wsxgOsbOTWxncgFrDOItIbujvToNMlqBzhMu91ycLaG6AoFAUCAwpwVRHqBUNE2D9c72rp4BcEbqp+1c6lRdlNKhoSFYGwCTcJC0s9JSqUaEYhMIBIL82Bv3QHZ/QkgqlbIjJAtJJeWMinTubWbHp9jqrb6+HnIN219VWipVinBFCgSCPDjT98BaKztdU6WrlgXYRcW5sAzyS0GsfIGFE0LWrVs3a9YsZ6INZ95FmBKDXa2dInKXlXPjQ+dn52Z4zogSWBUgXJG5EIpNIBDkAXpYWLAFYQ6FTCmVGjsi397o2fbvwfFC9DHGePXq1atXr07Ljm8bT/Zd/O6nkUuYdvSjfULmEUEaQrEJBII8pGWBqfL+FFJJQTpEWZZhAgyCDA3DKGS7FncRgZTAJ2maZjgcBoUn7KryIxSbQCCoKWBPmbGxsaamJlmWe3t7u7u7o9FoQ0MD7DhTinXNsMJsfHx82rRpkUgkTbFV+VCg9hCKTSAQeKL6bTWAEBIKhWBnmWQy+cwzz3zve9+bOnUqZPQo0c6olmWNjo4ihP7hH/7hmmuugfXU8XhcURRFUapzMrKGEYpNIBDkwWlzOBNkVOdMmx3hAsYZKLMbbrihrq4OohlLcdNUKnX48OFHH300lUpBZI2iKLCeGiYmS+H/FORCKDaBQJAHF2dadfrZoEp2svxoNPrBD36wrq7O3vq56HdMpVIHDx589tln0zboIIRAhslKi+TsQig2gUDgg+p3SNo1tHMt6rre1NRka7sS3VdVVdM0YQE1hGLC/m1VLq6aRCg2gUDgFacfMthWRGUANoyGlc72IjAI/QeVU4rgEVhhBtGYyWSSEBKJRCDrv3PBtaA8VGBKs9TPuEreIS97mRalzgGu9XVJlcgzV2V8SbXoDU87x2P5pX5kZzmQLNg0TUhVzDmHAEWYYCuRJCHfVV1dXUNDQzgcBp8nbEZayFZtgmBUo8Xm8c0r21Axb33SVvl43+e6bPXP3P+zGmrlfkKZpVpOgVSD/AMD80ZODVFtDYE8I6BaoKrgkLTtKvcKB9N8GGPQpmkbykDMCMz25bw4szqOKliWhTGSJMIYSyaToZAG5TPOKKWypJom5E2WCUGWxSSJEPKeJpgmRej0VKgkEYwxpYxzJMs1G6tZjYrN108l61uYebBsW4ym9VnV0H85N852kZJLhFtx5RmghABSLZvkXaTqHjSY9XjF3xb3qjr9kC6tqHhtnUk6IC4RPpQu2gUSSFJK09KOQG6tgptz+rMsyxgjw9DPbOfNEEKcI4wRnEMItizLuSocdLkdxWpZFDYpVdVajtJ0U2xZO74A5PUIFdJJZR732KOljTeLOPx0lpBpZ3j5yr3MwPL0ohgCyzPw+aWQqh07kLXteQXlsV0e7UiXc6ph3BOAKq8z6BhwQtoHJ25mRVBslNIzZiinjCKEFKwQTChlYIQhhOCzZdlbBCCMEVhmnCPOuSQR07RM07LVfK2SU7Gl/eQKHOO4uJUqNeJLMwKK4h3KNXj3YnD4tWC8yNP+Ktf5E6JjDSbVTJkU8uIVRVC5CpkQTwHg76UKzTX70UOECITaw9Jsy7JgE7VKVzBIcyCdCqVU0xTI1WkYRjweHx83JOm0VkMINzU1hkKaLCvgzcQY2WkzKaUYK4oiwwZvebyjE5wqdUX6onCLsFjY5oLT+1dBp1lmBTJ7/6xmR4HyLG6Lgkm1iGS9XS53XC7T391KznWLia4IKwLsOq1pGmTZB1sNlEF1amJ3CCEIcVmWNU07ePDgjBnnKKpsWVZ/f/8Lz79w4MDRVEpPJpOc8/b29osuumju3LmxWAwmFyHLVzQaUVUFY5RIpGKxiKrKum4YBg2FtEo3rlRkV2xZww0qXdWcFCWsIG/n5bEaXjRHpch00GVteyHyzDqZl7UaHimWVD2OMDKF4PFG7oODvIX4alFlX6q0nTCrEEIIaDVYVcY5D4VCoOrspCSVrqMPMMapVIpSKxwOd3Z2Dg6efPrpp5959pm+vr45c+ZOamprbm5WVTWRSPT39//whz+Mx+Nz58695pprrrjickki9fUxhAjnSJblcBinUr*qhNLAgEok8UWICraS6RDgeTtIPyOl3P5GPPaGd4n2PzK06kYgt296JRNqrnk4L1i7jaT9xiKXOMGl/FE3uaUU7dl7u/sRZ4VhFI6Njb20ksvHTlyZMuWLUePHr333nsbGxsvvvji2bNna9oEs1QkSWKMDg4O7t2799FHH6aMLl26dPr06e3t7XWxJlXVEMKWZel6anh4+OTJgSNHjjzxxBMvvvjCDTfcsHjxYk3TzmT5kuFx2dNytUqZFFuAOTb3aG/3aysVb+ZxvseXNZy3LYXPWWYNrChEnsXtdoNJNVedfVXMuw72687Ne6Oq1RlVbq7ZSJLU3d399NNP79mzZ3R09Je//OXSpUsXL1484YwVzrksS4ODo6+88soLL7xgUWvZ*UXXnjhrFmzZElGSEYIM8YoZZwzSHeyb9++V1559Z133nnwwYeGh4dXrlzR0NDIGLMsKsuSYViSRCRpgsnBFxN7ji2r0yxAj+BlaYuXPs7LXEv5yRphkfmhWPL0rllLKtXSBSj5GmOlXVXEBXmVckhOCMVGCKmvr58+fXoqlerr65Mkae/evVdddVVDQ8NEVGxjY2O7du3auHGjJEkf+9htc+bMjkQj*JSSk+dOsU5V1VFUVRKKaUsHA4tX758wYIFu3bt+vGPf/K73/1eVdVVq1aGQmHTNGVZopTCkrZKt6yETLBn7J5mwo4ALNs6m7R72b/5rPMQFYl6CNz8APK0HZ4FtrGkUi1dnE6am85L0yZKeEhau5yPo+K1yjzCGNN1nTF22WWXLVu2TNO0ZDIZjUY/+tGPTp8+HfYa9d5kyM3v98XOfBm4C+89nSPkPMQY271798aNGwcGBr773e+uWrWyrq6OEEIpTaaS27Zte+GFF/fs2ZtMJiORcENDHWPcNK1QKLR8+fJ//ud/HhoaeuGFF7u79ztWthHnTzUwaY+g4u+Dk+yKLe9iXr+kpZhL+9M7uQITMmfgskZ4ey8wrfDCu6q8Y*kcHkGftUCyzOLWPbfswZjjPEdG8ok1dLhrtQ9Pru8wqySxjoxDAMmaaD+pmlCqGHpEgp7r1XaEcuyIKVWPB6vr69f*TJ/PnzJ02adOONN7a1tUUiEe/bx0B7U6lUIpGws3O5nA9b5DDGzqwqo4Zh6Lpup6l0gVKu6xZCiFIEN2GM67rJOR8aGnr22WcHBga+8Y1vqKpKGcMEW6Y1Hh8nhDz00EP/+Z//uW/f3nA4NDQ0zDlXVVVVFUKIJEmtrS2f//znjx49unnzS7puQDVUVSFEKvzRQfQp5xzS0EwAxZZGpmsogELK1PNOQRSYLNEluMBj9XwVnvVezktyyS2rLeIyIJqg8nSy/8ndt3Rzzp/q2re/PFItkGBmrvdnl1eYFbc+M1EURZKkeDw+NjYGrjyIOaxUFkQ7uBGyiqRSqaGhIUh8DBWD/JCpVOr888+/5ppr5s+f/7GPfUxRFIj7dymZMZZIJEZGRsbHxyGiUlEUyM7lnssYMiDDUjP7iCzLdlpk9xYRghVFgoV3qZSeSCR1XVcUGSH05JNPnjp16pJLLpkxYwasP0P89BMZGBiAGbU339zR3z8Qi8XGxxOMsUQiOT4eZ4wpirx4cdfChQsPHDjw1FNPyrIMypJSy7KCPzuwF+29Czjn0GrOeTwer8grkUbOOTZnZ1G4Z8n7t15sLOfJLiXYTSgkZ4rfa52ZL0rn9Qr8rXtLC5FnmhXi/PNOhNAGNO/OOeWUauBEw6XWFvZdynO7omCapqIosiw7czVBynxQJxWpFRiRkiSBiQY2ir0im1Iqy/KMGTMuv/zyhoaG5cuXgzLI+2KA5gOVaRgG9N2maa*6nIVYwy0vr2zKNwLdrFxT6yFMbY*krp4XBYkjBB5MyeBGhkZOSNN95oa2tdt24d2JoYI8YZwURP6du2bVu2fPnJkwPvvvvuli1bbr75JjhBliXOCULI*g0Gr3ggvMHBgZ279590003pVJJSYoSQsDJWoj8oYG6roNg4UilXoY03CpR+IgyMF6CyrIOjbMGzrn3IN7jvz2Osp09V2bUhq9V28X1SvkaNPiVZ+4/99+zZu5di5/qnrsfzZlTNqm6Z2PxEtno0U2deYu0Cuc64lFbV4NnEiwkWAcGzi7wRlaqbuPj40899ZRpmtA1O40we/fqZDIZDocxxkNDQ6Ojo0888UQwa3jFihXz5s0DD6fL5gCc81QqVV9fL0kSTONBWi/bssx7O8tiCCFZJowjxhjnyDStgwcPJhKJjo6OGTNmWJYlyzIhEueMcXZq5NQbb7xx3Qdvkoi0adOmzZs3X3bZZa2tLbC16YED+3ft2iVJyvLly2fOnNnc3Lxv376+vr5IJAqWHEJS4GcHthrsCgQjG0pPp6CskqUUFdCuLv1F1hRQ3sn1Myti3Ln7Lzmz58rajXrRWL5WaHkJJXcRTt7HUYg899/zsbu2ILTlmo91db90Z5mk6qJ0PWo1jy31Igp3z4dTvWU9pxrW+IdCIXuOzU5jDzuNwRRLmeszMDBw++23d3Z2KoqS6Q6FjBu6rkMnC9oF6pyWoTgT5wm*vb09Hz5y1+eN28e2IKKorj8WEKhUDgctucgTdNMpVLhcJgxBtm8ct2UM06IFI1GIKmjZVKLUvDvvfXWWy0tLe3t7VCILMuII4wweF+TyVTnrJmEkLfeeuvgwYN79+5tbGxUFLm398TGjX986KGHNE275ZZbrrvug42NjePj4zt2vHXFFZdzjhjjhSxlAwtekiDAEpumqet6KpUC12s1rJCrjNlYCluwPL98vxZPLj0dIJlFgWe69/WF3N2dOXe+xO/Mc045pVrcgU6xTiuFe7m42M40QsjY2Fg4HFYUJZFI6Lre2NhY5spAgMbdd9995ZVXxmKxTFnZ4RvgDDQMIxqNGoZhZ9hyKRlcmpTSgYGBW265Rdd1OOJeJUJILBbbt29fPB6vq6vTdX14eLi5uRkudA+0sUxGKYe9ZiyLSbKsagpCKJlMgmJra2sDjytCKJVKcsSP9xw/fvz4xRdfHA6Fp06dOnXq1EOHDu3du3f16tW6bhw9enT16tW33377tm3b7r///uXLl3d1dQ0ODnZ377vssnWg7wuJ9YBsk7quJxKJxsZG0zRDoVBTUxMo42rwRla+BgKBoMpJJpOQpApCBmwnWzgchuNlrg+YsE1NTZFIBPQWTICZpilJkj0ZJkkS2HPhcJhSCsaEe23BMgOvWnNzs6Iotp4D8yuXhoOok+bm5kgkAuVA5qpTp05JkuRyIUJIUSSMqa5bpmmFQiohmFKWSqUGBk4mk8mWlpbGxkbDMECLhEJhw9Bffvnl73znO7Is3/2P/6Jpob6+vqGhofHx8fXr10+d2nHeeasoZa*Ll++fNOmTa*plIpXddBmRmGgRCRJClt2za/QAPHxsZCoZBhGOPj4+7NLCdCsQkEgjxAvJ8kSeCAYox95zvfqaury+vZKxFjY2O6rtuhIqB+7G8h+waEI9qmG5gR0LO7+07tkEvn4g1CiL0pdi4Rtbe333DDDZs2bfrd734Hd2GMQcQNpdTlppxjxjilDCEUjUYpNUFDRyKR5557furUqTCYgH3AMUE9vT2c82uuuWbx4nMtE4XD4ZMnT27Z8vKOHTveeecdhNCUKZOj0aiuG/F4vL29PRaLWZY1ODi4efPmXbt2ndmdDsN2bgFIW7t26NAhCAqtnsXvQrEJBIL8OHt5xlgkEmlpabG/KnNlbB0De2RD8AJMrYE3zJ6XBQPCPmIvMnNvKcT72SHsoKXcoyIh18n73vc+Qkh3dzcMAlKpFETcQGxkLmD6EnJcSURmnHLOZFmORCINDfUQnIkQOl0UpTt27IjH4zfffPOyZcsQUhVZPnVqeNKk5v379//mN7/5/Oc/194+hXOUSqX27dvX1dXV3DxpeHhIluVJkyY1NzfLsr3nakGKDYY1oM9kWQYVLiw2gUAwMbAsCyZmIIQEY3z77befd9557n196Th48OBvf/tbiF6xN12z96ZhjCmyhBCXCEacYYwVRT6zTgEjjLlTt3GE0Xvmm+0gRntWzOMKUc75rFmzPvWpT4ErEmoC4ZTu3T21GOeIEEQIMQyKMJdlgjEeHR2j1AqFQolEkjFOCGKMd+/b/+yzm0ZHR+fMmUspC4dkMA0xRpZlPfTQQ6tXr2xra2toaDh8+PCRI4evvfaDsVh0fHw8Fovecsstt9xySywWLdAJCYAlKssy5PqCI9UwwSYUm0AgyI89wQbWDOc8FouBeVQR7xMYakNDQydOnADlEYlE4vE4zPpwTiUCOgmbuokQljXNsphpUllViCzZegwjhDnCiNvdfNr6AcMwPEZYEELS4h5BVl4sGFmRLMvSDSMcDmshOZFIMIY1TSMEd3Z2vvnmmydOnJBlBSHEGP3v/3781Vde7+npOTU8tnTJClUJY4y3b9/+5JNPDA6enDSp8dvf/rYsy0uWLNm8eXN9ff3o6ClJwidP9g8PD5133mrOKWMU1skFtq5swxeMeFjdWFW7cgvFJhAIJh6Msa9+9asQUq9pWjgcHh4ehg5XwkjmnHHEEJIkzBEyKEcI1dU3plK6aVqIEGRbaZxhxG2jDcJSoJy6urrjx49fccUV4+Pj9fX1pW5R2ppIjHE4HF6yZMmWLVsGBwdBeQwPD3/605++/fbbIRamsbGRUppMJi+88MJly5aNjY1BvOLrr7/+ox/96KmnnopGo9/4xje+9a1v7d279/jx45dffrm*rDqvEpMqxJRy20TCAQ1yZQpUx577DFI4MQ5j0ajYF2djuanJjdSRNMwxhgTjjBHiHPCOIKlAIhgUGyZFpsT2OFz7ty5EFQJfrYSTSiCDUopheQd4PyUZXnu3Lm*h44cGDPnj3z5s1rbGw843jEhBBYqweTi5qmgRxCoVBXV9ftt99+2223UUoTiQSs9ps1a5amabC22mWleW0gFJtAIJhghMPhiy++GOJEQBNAGOHpmS3LIMwgmkZNyigjkixrGufYtCgmhGPyXlckd1psEPwJqVUg/hP8daZplk6rOSNW7CWDEA4Ti8UuueSS11577cUXX5w/fz7YbaDVYB1CKpVSVdiwh*qCt+2t7e3trZCWEc8Hv/JT36iKMrll19uR3tC0q/q8RwWnZptmEAgqGFg6ktRlDMZFDEk+zBNkyNEFAUxxjljCFmM6rphGIYsEcY5YxSDSoN/GP6dxt4pBmbX7HkjKL9EbUmbo0rLLLx27drW1tadO3fu2rULjtjLzFVVtSNcIOAeLtQ0zZ7w27p168GDB6dNm3b++efbZ1bJqv/SIRSbQCCYYEBaL2fsIsRnplIpSGeFEEKUDgwMHj5yeM+ePdvf2LZt27aBgcFEImlZ9IwyS9dqMK2lKAqUCRoOQmZgVVyJlAHYT/ZqCgjJAesTIdTc3NzV1aUoym9/+9ve3l5YGg+uUc55XV0dmJiRSIRzrus6bJ0DHssDBw789Kc/bW9vP++88yDdl23met++ZyIiFJtAIJiQ2Nmq4E9CiKZpmqZJkgQp7r9/z/eu+8C16y6++Oprrlm/fv1/P/b4wMAgR5gy9Od/lFPK6Bni8XgymcQYQ9gnrJAr9e48TnPQzslpr5xTVfUDH/jATTfdtH379r//+78/fvx4KpUClymcmUwmdV2Hy6HOYLzu3bv361//OkLo*uuWrp0KcwRQosqu5FeGRBzbAKBYILBGIvH43YCJ8g7DMoAIWRRKmE+PjLymc98VlbUY8eOX3HllYzjBx96ePqMmdPPmS6dGc9jWNeG/jx1Fo1GLcsCKy2RSPjamDQwTicntMg5mQcad8GCBV/+8pcffvjhr3zlK+vXr3//+98fi8UIIclkEtLBwCaroVCIELJnz57f//73L774Ymdn51//9V/PmzfP3kkHHJgeN6+YuAjFJhAIJhi2K9JOCwKetzMJNSjGOBQOmxad1NQUq6u/7PLL+/sHnnhyg2mapmVK*NrFY6RY4G2vRsL2H/2tnOWZbmn1CqwOXbyfjsHmL3fDVSmqalpxYoViqK8+eab+/bte/vttzs6Orq6ulpbWydNmiRJkq7ryWTyyJEje/fu7e3tDYfD119//bJly2bPnh0KhWwT7fQWAUKxCQQCQbUBhpSdrNKOX7ez+6uh0MEdO6PR6Kz2DlVV9+7dO336tKamBkIwY4xSpsgSwtg0LYy4LJEzu52d1pGgyWBGCkI27M0NnPsDZNUNaVsR2REf7i1K2zXQuawNiMViK1eunDFjxquvvrpr167R0dGdO3fC/B/Mt8EudPF4fMqUKUuXLl2zZk1LS4tty9rL4yr96MpBBRRbgM2lfF1S8c2r3CvjUr1Cai6k6l2qRW942jkeyy/1I6t5nLuQg612eoKKI84YpfTtnTsHTg4gLD3zp2e2v7lj0aJFrS0thw8dPt7TW1fXcO6iBbBOgCAkEQWWPNslw5+wtswOH*7c57zgzPSMm9b0jYjdf7pVHKEkPb29ptuumn9+vXd3d27d+8+duzY8PAwpIRuaWlZuHDhvHnzpk+f3tjYCOsH0tKe1XbMiE01WmyZr0I17LWYd6Tj3rVVQ/2FVANIqXRUg/wnKE7tAtgrwCRJQpwyy4qPjr7zzp6NG/909N3jTc2TPvt/f/76668bGYv/6Mf/8fjjj59/wQX/639+tbm5Oaypsixxzu34eFCT8CfMS0HhoBLSdlYDawx0D3y2a2WH7xeY48OOJQEtC/GTDQ0NS5cunT17NmyGBxGbsKTPvqp6UhKXn2pUbM4tkp3H0/5Ms/ddzizKog1fJaT1WdXQf52dUi2b5F2k6iJSd1+WIDCc81QyaRrmJz7510ndeOXVrbfddls4HHnzrV3rr1x/5fve9/zzz7/88iuXX35ZQ31MJphRCqkmwasJ+sAwDNiILhQK2XoiHo+bpglJvCDpvp2IGWbI7GdnL4Iu0PvnzBUSDodhLx4wIpuamuzNvu3zQfmlJb0828iu2LJ2doHJfK4ey/fShWUe99uXlajvc9miOrPXc5FVrjKFVPNKNXNSIevUSIHt8mhHupxTDeOeiYjLrqGGae7evbultWXxuedSjvoHBl977bULLrzo3HMXYSKNjI739/VNntwWCYcS8QRGvC4WVVUVNBNjDALo6+rqotGofQvLshKJhCzLoEUSiUQoFLKzeDi1mr2FG6hDO1dIsGZCKCOoN4yxXUkwEGFRttOUhHPO8jcqu2IrusHh4lBKmzKFr3KdPyG6gFyDdy9S9WvBCKm6SzVTJi6C8lKHwgWVq5AJ8RSqCnj0zuELzLExao6Pjm7btq2lpaWtrU1S1Dmz5zz33HPLlq9om9zGEDZMs7m5ubOzMxIJY8QZZfYEm13a6fVwCCGEdF0/derUyMjI0NAQY0xV1VgsVl9fD5GThBDYxdte2W0bWKCBCmwmBLOAbgP3JpRsr09PMwphghDeJWGxuVG2yYDMG2X2U1kHyGnl+LU4i9s6e9Tm9P5V0Gl2Nku1iGS9XdoAIvOz90nBTA2dqxq5hHP2kDk0gSMQwXj82JFn/vDEc889t2r1+XoyNWNKR2fnzAd+/ZsZM2auu/zyuvr63t4TjLHWlhZVVRhlBJ2eJwPNAaoIPI0DAwP9/f2HDx8+fPhwKBQaHx9PJBKSJNXV1dXV1YXD4Tlz5syePbu+vt65iNvev60oibhsBWYPT+EDmGXOrCX2+oez8JVIoxrn2Gxyxae6jMqDxby5D9t9Deqd/a/zYPWMx89mqXocYWQKweON3AcHeQtxtkhYdcFgjB05cuS3//VfpmEcOnRoaHho8dKl0885ByF0/y9/xYkUidZ1d3c3t7QsXDBXUaYwiyLONU01TRPCRizL0nXdNM1Dhw7t2LFj3759e/bsOX78+AUXXBAOh03TpJQeP368v79/fHx86dKl69atW7JkyaRJk2yHpHOKyzbaAs+0gd5Kiwpxqjpb29ku0MxV3mcbZVJs7gELTpxdmEsAdzll5LeLyeVjzGtneJ9gE1L1LtVccvBeMXfnYS6jzb1kL58FfoEc+WsuvviZ5583EwmOCGXcNIzZs2Y/u2kTQvjBhx/9j5/8xwsvvNDY3PzusaOf+fQdszpnYoQsyxoaGmpubiaEQIDGW2+99a1vfSuZTK5du/bzn//83Llz29vb4S6wCVwikThx4sQvfvGL73znOwsWLPjEJz7R2dnZ1NQEug2CJO3EKIXsyAqza2mhlba/0U58bK+3A8VWw5n7vVAmxeZxNshvacVy1xTXovI435MZfO9SZt4WCanmiuMovGLedbBfd653Yaa5YYsi0olLWri/PdMGK6w5sxA1lHAYIcwRQZhwhEzTVFT1*vWr1q94tTIqGXxaVMnRyOxRCKlqYoiy83NzTCdNjg4+PLLL//617/u6uq69tprZ8+eHYvFQNvBujfIvBUOhxsaGr74xS/u3bt38+bNP/jBDz7+8Y93dnZOnjwZdvu0a1vg87KtQEh/DLuEgwKzLMueePO4W/dZQjW6IrPGAmR+yOUuC+CeClAxl+Ne5lqEVMsj1QKVvceSvd8il8k4IdQVO4OzsdVQ7bSnjImEsYYIbEqDEMacI1nGBONJjY2TGhsZ55ZFCUaUMYKJRLCtHZOJ8Zc3v7B58+arrrxi5cqV8xcujEajUDznkHwE7iBhImFJmdIxNRKL1Tc2bX1163333XfrrbeGQiFVVUHNOJ2QheRegA+ZG4TaW+qUaDWOS5XAEWrbhaZpguKvkkxd1aXYCpGIc3LCY8ifl7l6L6TdMbPzShu+lT/qQUg1s/AiSzlbsbmaX8iCvEoZbXa8nx1N7txppXrAGCMsISS99yCS5fekz1dliTEmgYV3JiifUvri8y9sf2NbW2vLB6/9QGtbm6yo7LRRSE4Ln2CEMKWMc44wsRiL1tUtOvfcuvqG7n3vvPTSS9FoNBKJxGIx++6QsiQtA0iAdqV5I8HvWkE5w5IDu1aQhyyznhWhuubY3Jeyei8/QODce0/esGHD1VdfnX4L7243v6EW7hWrBanuv2fN3Lu2IHT7U/zHV7/nFiWSaukIPEtaoDAr22SIjICawwc7S2+la+cP6I7BfQfzUqCeZVk+duzYxo1/UBX5Qx/+8JT2doTQgYMHe44fjycSiqKGw5EFCxbU1dcTQoaGht9++22TWoZhzZrVOWvWzOnTOm6//fZ/+Zd/ee211yZPngy7XdvbqsEgoNJNL6YM4b2FfcYhcRe4RqvEHepJsWV1ChV3xVXhaRJz9cL+y9twB74GPcWvzrhF3ja6u/vSapvL9VeTUt3/5O5buvlLczbcc89+dPWcMki1QIK5j/wutw+WVbL86hDSNWGMIW4ilUrZ5kL1a+U0ZFm2nYTxeJwxBrlFLMt69dVXFUVZuXrV4sWLLcNACD368MMPPvTQO+/sVbXQqlWrvvnNby5Y0CUr+J133vniF7+4e+++sKb97Re+cMff3NE8qWnBgoVr1qzZtWvXjh075s2bBw46hBDsEjDhBOWCHagJattONmbvIVdx3DKPFGt+KG+Ic4Aynd1urumKXCektTEtSwXn/Mfd37unO0uBfptc0kmICSfVOxFCG9C8O31otcKlGthOLXU3ZN8l7+3cw0FLW*slbFFahiGvXdlmatRILaVCYlFwHQbHBx85JFH1lx4/qKuruHh4ZbWVoTQR/7yI5iQjRs3Njc33/P9H4bDYUWVk8nkOeec8+Of/ORTd/zN1772vy6//LJIJMoYkgi67bbbvvrVr77++uvr1q1rb2+XJAniOzLDGic0uq5DTi+McTKZZIwZhmHv9FYN5Mw84nJN2X5OXtb9uF/i0hV6D0r0tcbWeZqLweFr1XZxu7AKSXX/PWvm3rX4qe65+9GcOWWTqns2Fi+RjV4mw507jGT9ysXh4a6tvS/oLjWQF9HepRo0HGTdnVhONlvT2OGFYFoNDg6Ojo52dHTMmjVLObP12uTJUy677LLjx3teemlLf3//rFmzGGWKorS2tqiquv6KK6ZPP0dVQ5Ry00yaiKuqumDBgsOHD2/fvr2jo8OecKrCychCsF8AhBAYu/BuUEpTqZRzfrFSVGAQkbencF9s5HK5yyV+Krjhjrl3/QTdtfu9s0FpFcg79eXsubJ2o146Jl8rtKpZqvvv+dhdWxDacs3HurpfurNMUnVRuh61mseWenQn5r1FWp4wL0PMstmX4L6zU13YqXhdVkZWLfa6aVt6hmH09fXV1dVFIxEtFFJUlTGWSia1ULhz1qylS5fu2LHj0Ucf/fSnPx2ORDlH4+Pjr7322qWXXTZ58hSMsUQQkk9PLs2fP39oaOjAgQP2c3Gunq4N7H0D7JlXiAK1518rTmUmfnk2Ms/J9Weu84v0A7v6x5xznl2rZa1b3prkyiURIJnFBJXqnDtfgqJeOuOKrKxUi6gMvN8urzCd53iUfHn0CrieYJUYjM3B9TThIkegC4aN1uzBBGMskUgcO3asvb09Vld3OsDEsjhjhmFEwuFzz128cuWKJ5988sSJE4wxxmhfX9+bb77ZtXBhc/MkRZYwRhhjVVVgQxlCyMDAgJ2w0blGomaAF49Squu6PW0Jy+wqXTVUdeH+AoGgConH49FoFPSBpmnRaHTv3r2*lZJL+YXCIwE8wJSRPb19W3btq25ublx0iRZUahlUcvSQqFEMiXL8owZM847//yf/fz+/fv3T506jUhSIpGob2iIxmKqIiOMLIuZhhlSZFhGPTY21tfXt337dtgHx75XpdtdfDGapplMJimlEBIJRnA1DHdqTdYCgaDoTJo0KR6PU0o1TaOUDg0NffKTn4Ss8xPRFrHz7oMrNRQKhcPhkZGRz372swghZlmcMUXT4qOj4ViMMl5XV9fV1RUKhTZt2jRjRmcoHB4eHr5y/XrGGGWUIIkQKRqVYS+bjo4OWZZ//etf//KXv4R1BWl7k9YSti83lUpJkgTxn9WAUGwCgSAPsMUlfJgzZ8727dsrXaNC4Zzrum5vVTMyMvLQQw9Fo1FL1xHnBGNCSLSuzqKUEEkipKmx6ZOf/OSGDRsuWrO2sbHp6NGjV1xxOSKyaVqyjBRF5ozFk8loNHrs2DFVVT/60Y9+7nOfs12dzlDMmmTatGn2VuPVgFBsAoEgP/bC23A4vHTp0kpXJzh2KAfsoAYHT5061dPT8+yzz47F45QxRqlKCJEkGROOkG4YiiJ/5CMf2bBhw+OPP75kydJ58+ZpWoghRAgmBDPGLJMqijo+Pn7y5ElJkubPn79gwQLnZF5tK7ZqQ8haIBCcRTj3M7M9hIqidHV19fT0DA8Pc4SwJEGaSUkiBGOCcTgSnT9//vz58995552+vr558+ZxzjHmiiJJEkEII4QJwZIkHT161DTNuXPn2kGkQquVH2GxCQSCsxGI7bTTMM6YMYNS2tfbOzY62tLW5jxT1TQthC3LWrduXSKZ6ujoOOeccxDikDQSIYQRUhSJU0uW5SNHjliWtXDhQnDNQWCFUGxlRig2gUBwFmFnbnSulJBlub6+fvHixYcPH969e/ea5ubTLkRMLMvinMuykkwm169fP3Xa9JaW1rq6OiJh2A2HMi5JJKTKmCj79u0bGBiYNm3atGnTIJICLq+xdWzVjxhHCASCsxHGmAKeREIg7v9DH/rQ0NDQq6+8cmpoiHOeGBujpinLMuQoiUajU6dOveTiSxYvXmQbYBalhCBVPW0h/OxnPwuHwytWrLCD++3Ff4JyIiQuEAjOIiDjPnyGkEWYBgP/4YKFC3t7ezf+4Q/xsTEtHMaEIIw5QuBRlGVZkiUw5kzD4pyHNFVVFM54X//A/b/4RV9f3/Lly5ctWybLsnMN+4RLzjLREYpNIBCcRcAKYjvVIaXUNE3YnLqurm79+vXTpk179dVXX3zxRcMwTm9dbRimaThTiHHOIUGiLEuGYRzv6X3jje1/+MMfVqxYsXz58ubmZtBnzo1GBeVEzLEJBIKzCHtbUecRsOQsy1rQ1TU2Njo6OvrsM88wSrvOPbe1bbKqKGDSMcbwaTvvtCmm68ahw0feeGP7rl1vd3R0rF+/fubMmaD2YGm2sNUqgnT33XdXug4CgaC*aXeGRQbpdROQQIJfAkhuq4Tgqd2tLe0tGx97fXXXnvNspgkSUSSCJEQwoZhyApk4TJN0+jv7z906PCrr7669bWtpmF87rOfmTVrVigU0nXdMIxQKGSnmDqrjLZqaOwE2L1XIBBUllrKCJVrH0E7JzJkjxweHn7iiSc2btzY19fX2dn5/ve//6qrrgqFQrBt9NDQ0Ntvv/3oo49u3759xoyZH/7wh2+55UNpRTkLr3Sjy0o1BMsIxSYQCPJw9vQSEPEB0SWjo6M9PT0HDx7cvXv322+/feDAAUopTLw1NDR0dnZ2dXXNmzevs7Ozo6OjoaFhwm1NVyKqQQhCsQkEAsFpIBO/HcpoWdbo6OjJkyd7e3v7+/tN04RvQ6FQU1PT1KlT29raYF9NwzBisVg19OkCodgEAoHgz0CsozPuwxkAAtn67ZQicBy2IjMMIxwOC8VWJYioSIFAIDiNndrR3trGuekMzJ/Zf9ofYJu6Stdd8GeExSYQCASnse0zsL0yLTAwzjjnsI8PxJJYlgW6TVhsVcL/AfFBYRAFgJTJAAAAAElFTkSuQmCCAA==" alt="" title=""></p>

<p style="text-align:start"><span style="font-size:15px">參考答案:1、不變;變大 ??2、D</span></p>

<p style="text-align:start">?</p>

<p style="text-align:start"><span style="font-size:15px">動(dòng)態(tài)電路分析,萬(wàn)變不離其中,看似比較難的比值或者乘積都能通過(guò)最基本的物理量得到,因此學(xué)生能夠掌握分析出最基本的電阻、電壓、電流的變化情況是解動(dòng)態(tài)電路分析題的關(guān)鍵,希望上述的一些解題技巧能夠?qū)Υ蠹矣兴鶐椭?/span></p>

<p style="text-align:start">?</p>

<p style="text-align:center"><strong><span style="color:rgb(63, 63, 63); font-size:12px">▼▼▼</span></strong></p>

<p style="text-align:center"><span style="background-color:rgb(0, 0, 0); color:rgb(255, 255, 255)"><strong>?該如何備考化學(xué)學(xué)科?</strong></span></p>

<p><span style="font-size:15px">做自己所在區(qū)的近五年一模試題&各區(qū)模擬壓軸題,嚴(yán)格按照自己所在區(qū)的考試時(shí)間來(lái)答題(40分鐘的最好35分鐘完成,90分鐘的最好80分鐘完成)。按照各區(qū)考試特點(diǎn),極有可能出現(xiàn)幾年前的高仿類(lèi)似壓軸題。做完自己對(duì)著標(biāo)答找出不足之處。</span></p>

<p>?</p>

<p style="text-align:start"><strong><span style="font-size:15px">建議:</span></strong><span style="font-size:15px">按照每年出題的趨勢(shì),建議壓軸選擇重點(diǎn)放在計(jì)算、圖形與溶液析出晶體這三類(lèi)型的題上,壓軸簡(jiǎn)答題重點(diǎn)放在氣體檢驗(yàn)題型上,在這里我們來(lái)舉個(gè)例子。</span></p>

<p style="text-align:start">?</p>

<p style="text-align:start"><strong><span style="font-size:15px">【計(jì)算壓軸例題】</span></strong></p>

<p style="text-align:start"><span style="font-size:15px">一定量的木炭在盛有氧氣和氮?dú)饣鞖怏w的密閉容器中燃燒,有關(guān)分析正確的是( ???)</span></p>

<p>?</p>

<p style="text-align:start"><span style="font-size:15px">A.反應(yīng)前后混合氣體中氮?dú)獾馁|(zhì)量分?jǐn)?shù)不變<br />
B.反應(yīng)后氣體混合物的組成有3種情況<br />
C.若反應(yīng)后氣體是3種氣體的混合物,則其中C、O元素的質(zhì)量比一定小于12:16<br />
D.若反應(yīng)后氣體中有氧氣,則容器中C、O元素的質(zhì)量比大于12:32</span></p>

<p style="text-align:start">?</p>

<p style="text-align:start"><strong><span style="font-size:15px">點(diǎn)撥:</span></strong></p>

<p style="text-align:start"><span style="font-size:15px">此題考查的是化學(xué)計(jì)算中的極值思想,此題只要找準(zhǔn)極點(diǎn)題目就不攻自破。</span></p>

<p style="text-align:start">?</p>

<p style="text-align:start"><strong><span style="font-size:15px">解析:</span></strong></p>

<p style="text-align:start"><img src="*CAuYN21Fq3VolV/j1St9anb01YsPtpWf+JCRVyqVClapbgAIhVEVIqgQXYhsoWdRBLIntybu51lnj/uTXIDIZCb5SLM+8Xrxc3MOTNzvjPzObMfRQiBRCKRdCxqshMgkUiOR6T0SCSSJCClRyKRJAEpPRKJJAlI6ZFIJElASo9EIkkCUnokEkkSkNIjkUiSgJQeiUSSBKT0SCSSJCClRyKRJAEpPRKJJAlI6ZEctciNzccyUnokRy1K3G8DrJbca4CZ7PRLmkORh2ZIJJKOR7Z6JO2KAJ78/RJFeVlRpijKlE9X+KMej971T0WZqijPXHr51MOGEqxi8oQCRXnGq0zppDw56/2qVWsC8xbtqr9g7txSRfsfhzI5RXlRUf57+luhgHylHuUIiaT9WfqSAAGClNDCgqhbcMdiY8ku4Wt0oXnwvevmVachoPyNNYGoyxdz1g707P/NEz6fEPZ+cePpNpQOH1cb9Z0xaQWILkPXbTwwJDvZZpA0IFs9ko6gU0/f59OBJdS6rvhRsALA7U2xeuNLbXShdsCNVinX/iTNx9aJszPvHOKJOl5y3Vnvve0d1L/SB1MeY+YGf6ee+tynvVHfmx8698GLrfI16TfedEBgCpKjBik9ko7ACgWHXMzb00aCnwpx5wMWIBDG4YYaJ437vhAbKq/5WSP3M0amnnNGV93gn2+HwNt7aOeuccIy/Cyg86aZrNkn+11HKVJ6JB2By1Cqu3DLHTw7RgPvnJd8v5+IoVHj8YaBMJde/J+f3fRZcTB+Rj0AfPBmNWgM6ew+IMRszh3g6lzJ7pAbtIwcIFTveXIakAosLfSVFnDxsL89NH7XkadW0gFI6ZF0BDZ6xIkJD7/rGd1vFbief5hHZ7hDpnDB/79v26IvS+fMrPjZU6G4tosXqKAUoDaQ0ii82MS5aVFNENB0oEGdFKcdvcYoMU8/b/aXK8+c/LT2wodVLZqfl7QrUnokHYKiRSI4Afgo95y+nUwITn++dP9+B3DTr3qLwC/G3nZF9kHLCH888FSAHRVljZz16H+ezgxJ0YHSwkbeJTUKGEBmivubr28o2nbhCe7abp0jGpKjBSk9ko7AtG1VrVsUmMUX/0mDasiOOvQbpuHhsgGecTd7DrjxL5N6AJjmJ5uaCtfDFVeZwM7NFMQ5L1yig6/HUO4Y5e19Cumd+X9jBtz8467JNoOkASk9ko7A5xHVwYY/ew5l0yINRLVNEMDcthZPT/P8/gfeeOLl/OX67XDO5F+ytW4wJ2DxzHNFK/MM4KEX1f56sW9L4eQPY76b1/heWY6n65wVq2MTZsvXf3/782ZFUPa3jiLaYDVzCJ7ex7kZXONK9tNIjko2fhK66t5300/w3HRdzmN/HFnvPnW6NfBcRvTTKlaSc0F4yAiXfVLZin9lHXC7CDDtTZ59+pOIa/8Zg3ooamDAkJQrLhry41EZ0QsqC5j8etXf3vny8gGpEd2ePf/LP4177GcPegZ2Q4eFH3LLrfsGDOvW7cx3Z714c7KNIYnRWul5q4Y7Vofu6+d+qXuyH0Vy1GLi00kzwNG0/019Ns/cMQDofxtb3j5EINEmS/OjNUFwNyzfEbDty4L+F5fBEODuifkv/b6/fD8eJSQoPX54pZQJ2w1fRfi+walSdyRHiFk/RCxJKjXQKakJSGSsZ0IpaUvCf1zp95WGxw6SuiNpAS3VnafXF3xbJZcFtj1/LeV/S5OZgBZIjwHvBVCWhh/9xk+1AYw9M/UfJycz9ZJjmykwvlD/RXHYSHZKjj2eyCbPh7ZCvBOIW4vZgRxRhys6kPzCLsNXHsauc3WpQ3M8nR0/+H0xaTpz+iY7EZKD2A4XLKrc78sg4nvqprTxyU7PsYeA0Tv5eFvYk+G8/2Tl8a54OzD2w0vPdB+3rQxRe+wevORUxZUdaXPJEfFGFXd/EcDvJRU8q8Q15yQ7RccmP93Jx1vDAG7tnXP1WzuqKhy+wzUwjSu7u0mRC0ElHUcePLICLC9pYEHtOXdtN6Jvv+9gSgVTKqlMdiKPDf7dm2v7uQBC1m1Lw+mreLmKYOvDPRxHOsO1FcZvZ/bWAGZdj6uT/vZQd68fcnNh5Hw/stVzVHL+TpatCuNyYQdQvURQMq3/XKqNgvt383KeH10nQx+l2a2JZbeqhVWN4/44jX0hS1THdWtUHOnOJ/oqj2S2Y6Qtm1wvhJs2iuV7Q4Qs4PRenrWDNceR33+UofxbSs/RyFchLloYxHKjgW4R1lAVgoHbTzPfOqvT/bt5Jc+P84db7n4w6BnONcOUM9sn8JZNrveAbwYpyy7zjDk9Fbe2YU9wwFqrrEVBSCTNYsDzG2vQPHQiu2sVQZ10JeUUcHre3lk7BSzZ9e8QTujqmtRf6ddu4SeyvOs8hfN6M6m358aNIndH7SVayvrBx3eDVdJ2LIW5e0yChdf0yDrN9j9PRmbQ+miwdlHhVuyce5cxugcAEePli1Nv87QqLqdO6wI4Rng/yJgl4Ya/U7S55+o/bed134lvH82Brwcpa36a6tW5bhuBDrSU5BhmxrwCInhF4ObBHg0TFdOMdIE7zu9P0KQ4/O2mWDu7i0a63qp/UneApYIxay0AFW+m87GhLuPCdtedBFs98QyBbwYpW+Ebg0tk71vSak4d0pMdTDsjcwSs1iwEEadwwFMZbOqe+a2P1G4u9vgBp9yI3mo+CnP9cpOgpWfo087QbvLSYXvc2mY/TT/od6zojhy6Si6/PZHxJ8Z+m1Y3dEyNFMiB5ecD3P89m/YACLkZrHUsFVy/3ERn4jDX7zM6OnaZeweS/W9/spNwvBKdtErRxIWyWLY7SwVPbOfpM/TfZpLaBuG1GJnHEslxRxkETD7vm8z1TFJ6DkKNDb2f2UOOQrY7EWzAiQrkFUeSnZzjhSy4MtkjJFJ6DkKPrRuRKwY6hIZVOkpxstMi6UDk2cwSiSQJSOmRSCRJQEqPRCJJAlJ6JBJJEpDS80Mn3AZhJMIxc3ScPPg5ObSf9MhV7jESPfj2CKtE8wvfq+o0om0rmDiG5kYPNY/ZygLczO3HjGq3ivYrQPJogxjuBO9rk6n9zm0aWtum7fCYmo2CKhoX0w5qprSyADdzu2xn0apWj7Rfh3Bcf4shrFmo6LbdaPlbe5W8DivR7b2YTyTk1dEk2Oqxyliz1VIUG7eRc5Y3+iUu63u27wn6nYrD6z5zUNukrygvGKpQg5pW2s26sK9LC+L3NGw5CeRTWGyUpxFU7e45Wv9uyekFmGFWbgmm+FUPZAx3ZUdfeEUUfBcu60RtuuvCgdEsb76xYDX1qmwopiUGxavCakjHYZ56oct7wB2lfFVkhRHZfsthiIEj3a1tmoTYtjYUsjRTkHGeo4uDtHB9906AsnVjuLIGJ5pPNU4f5mmPszS7BUxsbNXVqLLWnYmqGCR67EUFeMG9bz1+f7BGFbXdvRf2iNmr9FvKAqGQx+42wJvjMUFrZSvPhLy1IaXWZehm7/6OrEwI4PeiR1vEBgXfWd8LMyWsWorZ50eeTq1dRR8EJWaaMNvWhU3bDqhqmakNPF/v0Xa500oSbPUUl9fM/lv+uSO2nTtk4623GdGhziJf5Wefb37+lUVr8ktan7KgjzFXctLgP09dvH3V1qK1X2695/aCS08ryCv1AZg89yTpp68Y85fcTeu2rvl462U9Prt+JGtDSWgnlJSULPrn9h9dsL3/BXuuvKI4uv20rDb4nzW7H3nqi42by0A5guLbXAv/gV8ysPuSP7/8xcpdReu27nnuvp0XD1v22szYOFLZIs4YVXHVyHc2rC5auqlg+MXvXXDa9ws/TfyJ3vxfTj+76Nr//uzrrd+v3bbzvT9vv2VU7v0TY8uNS9cqw4Zx+jnz167embdh033XLL6w++YX38DfJsMYjV7MCia2cMTnqai3U+JN9sxorc/fV3XrDbuHjvjuop4lUz+I+X1X7H9g/NzcpbsrSkOgJ6Q7DWaY/Qrnjfz+6uu+WLZh77db9r45ueC2i1f+6pGtDnCD7ztGXUaf4V/MX7Bh9ebtD9258vzumx5/zmxdGfZGdSd3EQOGF/e74sPcTZu+W7X75gumXncas1bia30etQkiUUq+FAoCBOyaMPXTqGOkWCxeVmMeeK3RkoBtIUStIeBtEMt3iFCdx4YvBdQuKa0UQnw0oQI20cveX+c79Q4BIvOKOQVHHBNzfcz1saC2keOCUPRfi6wR3CS6xqxR8OCE3JhrRLz7cU0wYRPXMfaSAKy/5uKShqBqxXUXlD/0khBCFC0W8BjYm3bU+ZYLBzVQWphQdFMfDcFKHMVFtrDrHuT5seLsscVCiMAeMYQFIF6ZHvUzRaU4gSDs/DQgSlrxmDHLL2koLeNXljNTOD9uFOy9hbGMmxVotWWFePV30VwTMHvpppjja68UGq3KtljKFs3wwVJYV1LT4Df7adHjki2GEKJE3JCRC+LeiXV+hsimAjbOWNza59qaWwvFUD2vvoaURB/z9XVtYLY2IHHp2bpGrP1cXDZ4KQjY+e4yIYQIBMTCxa0pfkIIIWrE7SMFFA68vugAFZs0dkle6c5NeQIKQUxb1+BfskWkswvE5I/r3WpFXd1p+uHbVHpWzIqMuGA5CKh4drHtE0IY4v05+XaLAhLigDTnzRJggFjTWFNzl9XOmyWET1x2qgDRY8yGyjjfP9xogOg1vKK6hXH7tggP1SA+2lDaKE+qxaQ3hRDiybuCIOi1LD45s54VIPCs2dnihz3I8ksbpGdsXoAZwjNHFMVddt+uOumpSSiaxkx+d*n04SXvSB6Djej1fL9KdtEq3Utki9OJQDivZWVhhCi7h1aLSLPvhQUQTHjyVIQ8MWWuFfzxtkGCFLyN7Yu9jG9akEMuljEZ9P46yJQ0XWIqBFCCFOIoBC+NjBiQiTeZnUHoaf5j8UXntYpH065+Srml+CpQlNF/VKTgwa1jmiUa9+3fLwEyDp1hOOATshDz190etYpC6cDqcDZXRv8s0+kDwXA21Nq6hLg7bC5GA1Ed9/0z4aN6lUMqeOuUP6VD35SbG/LU9DojkkPxRrwgxt300ec5736aoL7WLcDIPukLp3jfAecpgN7lmvLN7Ys7j+OJYgfuGxQVrx7WifuuQnCfPzBPsDdLz3+kJdzzwYg2HneJ21qVa0cF6azUf+jvsNltsUkqls97fJrmfFaNoQKlu//1Y0EIKy6Wj8g+8Ij7MAH/PiczjoNyyDScNx3jxuNd18VAKdlZsYNUQ48TweoVd+afUB4JogjnHaoKeGrPS4I5vQhvtQMODkM3pK1LM6Pllk3pHbAJ7eaJHHpUQyCSrBbBrPe7w9Q7b9+tLVvH0JzRscBd+5m1Tb2NbrpiNZKFO0NVFIG7m4nHXR0WmcU+G5lbNq4e11tMwGFThiA3+ft+MMXTFME7Ui2h3fez1FxEAncc11FTSUhM1ZDdxexIj+RbvaSQsDg9CaGghQP1dWUUgL06NYt3svtjP7v8bdwWdHMZQZkc1IT38D1eEFjQ3UR0POU7o0WFMXKkac2eka3j283s7sqoSmVuDs0y0BgimB8KHadMou2eK1UlNUoOqPvcTw11g2pa2YF7puwtsZMr9f/vDzyEhq6/GwB4CSN7MbuCngcYLKi+HtA7ZURn7NCjz5r57JSgNx8NhXWe4aOsML6q9mLCkrXnEbuGV4zqoD7awHClXyzmX1JWmaUuPRojrDDrRsw6EqWT7dAM5ZrP7rBv7nM9MDOz6xTT7GG9WP8n424cnNEM1ApTi94wReubfoDk6fEFClkVkd/BHTAJHrOd2pKMua5VEVTT1Ch+zDy5gAmWzL7jvSvKvUAJSsYcFLN8NMYO7aypefn94rarbZpX1darJUUKmtsq2jGOsr1Ti2Lrg8OcBzyy54mPegHlFbujXfWvdF1ACIlDQj8fGhoyEDfqV1EXokCYRL9aEBGMAPdUhp/56/+jzbJ5swsNy5AjP8Ht13kBe+0R4f86e9WlQewHr1+3+DBJYNPYFX+rpaGfEJOzGJNI+hOL8AONTqmSNEVBcDMSWHRI/kXnMagnqGn50Uf13OEq42cDjqhgNvX+F3n8cVud2ZVUcYlfQpHDOSykWVFiS57bQ2JS4/H53KZnuj9w36pvfLHKijev8u9d18W8Fn+uuqd2v03zP8yt6qlL6e0wXTFAWkFm5teqvuLW6PfQ3Vv8uIn2rEiEORzegDDz/GlHTaOh56xlP47R3d7+xc/Gb7w321gSAdQGp0VHXQd8961dapKClO37nUF4YPVW3du6DT+xpWLV/lDLWzg9r4UcLOL/KZ8M7IY1ikb0GtS4wt54Q4AOq0YePIRxmNE92RccwNQQYDCJq9yc94NNhCq0uOj8+dHTfDtwMEseeOrP0yvmD09zbbnVG+JdjQS+sJijW/0H8blXXfS7qt6pZ4zhm9iXcf6Iqu0xYJ5IYQIx+T77Y/1QfwLKF8fLIBd87b0eah4xYaup7Fm5faKljYORv0cgCAFTXaTvFx/RxrAzux4Yfavjzb7vs7phf/kPqKEoQP/89VKWiTfWV3ok70LwpQ3eonk+jxQiTs45CT3M39dP2t2j9mPfrpj2d4937eBJRMyfUKULjDW7Ig0DFJFxG/OL4aSR99ouObrmfaNT+5PIPCHbxRQQF/jgFHS5V/bQgjhE329e8Ee86xRP9Q4b7oAH5TkNj/UuTDX4KQQxP8Tl44VodhYX2LDzLUbRe5yX/z48JOjTQiMGScidS4b5oqL79zW0lHn/KWxKZhJC4vi07S3MhI1ztNjBex05hTvrR+tNMS56UVg3vJq0DzSeGwhgkIIUSROJATi4Rca2d6oEeWlQggxb4aAcli7dFednynuGbIezB/dL8rr3PbsENnuJZUtGQmOmt27NCKEEP+YGSGzcTbp4lePCyHu2W1Hh5nfrWqhKZti4pNb7bgR5ci26HjK6i11RikPiRsH568padEsrRBCiErRiwgYt48vajRmbYv84kohxKZPBZTA+hkbGjzHjayA8iE3+irrsvLh/ymYMK/FkT/221IIpp0U2hLnODhNwM47nhD1pcK3PJI5dHlxpMXht57EpSf/0/IZi/Ma2TQi+l8gHnu9weGpP+QuTyz0oL*gCIrj3fjU74mELc9eDyGe/FjLZ3j+iRGYQNU5ZEhBB2pejpWAtiRl6oudK+fptBjwN0J6Y+Q38es0hC0lOyQrw9vbxRPfeJweeKO8c1OEz47az1jYSnfv72MPrw1iQBu2Djgh210UvXzBO33vf+zrq7nxhbCeKe8aujDr8YugtW3/ewkdjk+oq5Aipgw1/eqYkac8tKMerst3bWvWdmPB4CcfaVNVGhef7eIKw+d2RpoWjQ2VnzjZUtnMWNmv3kL0PWhx+GU1ObyCZdN373uz9tDkWl56OilsvBQdzz20V79jZy2ZArPAMXrK/7s2C/mLkowcDXrxBeZxGseejJ4mh5Ktgmhp46bkXdjN27U2tB9B6+p9wWQoi3niqFBf3O3LM/Tgtee3NbAm/vgCluv0VAwZiHYzOVNw6dC2Ls48FoaNGC9MYTy9b72sCMCZCg9OQu3tOJVzxM7X3i9EY1xxCrV8em8353ldj2kZg2L66KtZC85dUZ6nO68hJM6tL1taUr4oUuJIR4f3JFOhNUXobp/3X/F4cPcfR9TepOTH3mLE5MetYtXevlj/Bqesr0+NtMIT5aHHvrTLxPbPpSTFkq8ls8JRwz789/sgb1CXgunWmP/+nAhR971gVO7fUSPO9gsspdReUtjaWeQDTGcWPXdeFVeAn9hSvvmCtEo/VZtk8MG/EmzldO5NUU/pC/qVEQRV+LZx8X67eKmUtbEHHU7Flzy8LXXnuoPApnZd3x968SlR77gIULt/98jptXnLzwxpw98e4zZ6+PBV0sfnNtRe4mMWHayoQNOuHxvSk8lcZLmUwbPXrhwc3en9wwAyZ49ZdQxq3cGucRFEP7i683isemNb9K5JDPW7RN9Os6FZ5w8JqDV/dXNPKeP0289paYmyeWt3ImPyESb/U0z7TJG+A1eMtx4oIkPNYhMDixOem56u6EWz3N897kHR6mwut0eW9HS1faHMU0WfV3bikdnP41PA8TJr6+/shDi5rd+dbO8AknHFJ6XK7/umVSG7Z6ojTZ4agu8V169kJ4CiaOvuu5toqrSQ0xm7pu3JjP4XV4occFn7ZV7PWsWRDIcU6Bt2DinEWVbRBiC1GEaJMdZdFtIw2btIMVVFdQaUAWA7JbFXSzmC2a6AgrzQ15O3tfquz4XPk0tipIXJnwhxjFAWtzxPeUl1OTQlUWgzsf65v6BZUb8DuxnJx0Sgv2SkYtrxTuCd4zANtu8hpVVe8a+cg/H/wj8NE57tE5rZnmMuq3yIUOccBAYRHhWlTI7EvnFobeQmL78Yy4bXvhfPIdCDeeLvRLsDBaUAFN1cAqCkspTiFDp2fXjvvoaD1tNQ9dv+MtlomeTDyZdGtdoG2efo0uFuWH8lV6dm+jVB0ocEp3srpTt0RPdNhCR4gWvkrIavaaI0xS/GWhQx4HopBxBgl/zFLXNSUjQ5Q3nU22ppGZ3kaWaVBF9yEs0OPElmZWIMHpvLr3UbxSu/pzZmufUWtad4DO9OjMAbtJ/2UW55Z8e37GCb/0DG1tzIejzY8KS/R0mg5BH3ltc963X9chqUhMdxKeSdYOpztHnqT4y9oro1PTO3HWWYf2TlXOH9IO0SotdD8UienO0cIzS158bf6zt37yv5d+O2khpe36Hd7j7IDUvzyo0vQaO2fa2dwxuu1iso5gzXuL1CRZB6F2NOldOqm33KI4nU34KYp6+eW9rrow2WlsJUfRoTkHMGBwfzqBVblo44KfTr13ZsWS9ovrOJOekYMdz/71YPVxnTRSyZ/fpjFpR3AiVIvGfI7a12nbr4TVx4xRH3iAzo1HV1wu9frrtddeU5Qf+qcZj6r018T/8UHWHbnXvjwq5wo8VZHs78f+55Huq8a9U7GiXaxwqGHmIHzO7krsAEbUWjqKgiLQBNgoOhUmXlC97K+hm4biRhEEVNDRI+gWhkHYxPSQ4cBU8ZehOejqIBVKwQ8qdIE9ADghFQwwIB0MFeFEmKSbRASV0EnHD37oIggqWJCtUwUaeEyKQRM4ddw6LgUszBBBgXKQBNiU7jnr19NOnbNYpWYVp792421XfDBcqRud2FS3Un9gnS4rqI2LywFFJ+rrE3gFusJeNx5ItXBFiEBYx/aghrBNbAcZBoZBxCaik61hKkScCHCCFiKsENKxFRRBhsC08AtqFJzQSUHRqQIFskOUqrjcpOqoYQyDkIKdQioQIWTiBJeGQ8evx06EsExqg2gRMl1UaLGtg6oCYCixBpoDPOAWWBYGuKBaI6DhhRSwLWotPICGoiFshMCCkCBFQXURUQmbiAiqQgr4IQjZ4FYAaiESsz86pIBuENsIIxA25CMAB6I3qoKR*7DkHumdl+xUscuzTn127/evPmWa7ph/L3whNXfdgWuv6RqVErQeTjt09GVWCz1C5Kd4FAAQip+G8UkXSNTsB/2KfR1EVGI+AnqpCkI8AuwcNjodkOumwpWtA1jo+kIJzbY4ACXhQLRTS61KiU2qYI0jQobDzhcBMJYNkIFJxkRTANDYNt4wAl+N2GBGkKHWhfoUE2WC8OBZR6usaxjACadHTidRBz4DfQahInixOyMH5Qq0t3oDkwIl+ECRUNPpcaB04dRRXAlaz/64B9YAkUnNQcrfebov/6EnDbsZh9SekrhjBdu2q+U4RIoNtH+ga2iaGCjgOrDjqakDK0rlooNahABlo6moZmoETSTcDq2iRrEpWNkEklBL0OrBRUrA704VhztVBQDxcRMQzVBYIFIQzXQq7DTIIBai9kZLQg2ZhZR6REenPtAQ7iwnJhOUNAMHGFQEK0eShfNSw+gotYiPAgdvRjTjeUBNw4DwggbU0UXKGCmoRloBoqFkQEmGFjRaq+gWxAAgdCw08BEq0X3I5xYXoSGUg0qZjbuUiwHkRRsFaeBGkYIjBQAPQwObAe2E6WWWP5aqAF0BTKgCqFiuUEFASaqAQq2jnAj3CgWigk6qh8lhOXFdoFADYI79vjCrisGBrYLoSAMlDAKqBq2G60WJYyZie0CUMMQBoFqY2sIL2johx1MiICKlYNagKLgSidUTepY0u8AqJhA6JvDN7us+mMG66VHRzgAlDBqAFRIxUxHL0cvJdwLy0SN4IhgecFGDaIAOkr8iYVmXJdZQwgsGwQ4EE5QsFIBtABaObYH4UWrxvYgdEQI3UQBIYiko1noERQQboSOGsKMAOgqWggLbFAzsC1sC+1w/XQRzc00bCd2GIKoDhwCDWwToxZUtFQiOlioFk4NQNUwTSwbYeNQcFXg1HA4cepEHFie9EC3iRf88q7+P2ltbWrIg0Pgg/1dA2i1pFqx3DUhrODSwKqzf6gukIpmY6mfrYgctBWl/k8Tqup+x49rVDd2VOJc6nfF19Y9SKTu1ZoUoil0gEWsgXaoaw5If5PUW0YHOy40G/bXBRU+dOCHoqzux8GGCtP0LtX4NnmTFxzsWJ/4QxWMQ2yHbZr6rZvRglRX9zKq4x6nlVTUJdXVOF/ide0Ih9vqL4ufpKute+SDzV4a97sZLS6lZTSjyBZUEwINnAqGBgqaim4TiMocoKBrCAvVxAuWqHb419n7fdG2XFvQ3LqePLPErZiOQChV0y0VTSi6qZR6VY/pcMhP3UgkP0xUUGwsFVNRIqrqtHGBEQrZaXqtCEQcWgmhf7H8zY+mYIXBQY2rV6H768ff7E5OG0RfR1stKZRIJD94KmEJW/+5dt5H6z/EIRCeU07s99uLbrrLMaqtGjv1HDMfcpNIJK3l79vmPrHm3aC5H48TR+eHRv7q3qyL+rRZH6sRx9nkeiMW/FpRFEU5/8XtyU6JRNLRHHz8kIGYvXZ+MLSDDHNk6kV5N7w+KeuadtKd47fVs/3F8/s+uCzZqZA0z4JfK1e/Hvt99yfi71clO0HHEgfXfAfKxNEPLd238cSTe9zCsPZeSHZ8tnq2z/9g2YjJ2z65O9kJkRyK7S+e36A7wOtXy9Zp+zPKPeDRk39+Z/vrznErPX0eyBW5D/RJdjIkzXP3J9HjFaKviGUfzJfa0/502LEKx2mHS3K00+eB3Pqp174DR8AyTu8nXxbHEMdnq0fyQ2LBxAeXwYjJf5BjPccSUnokRzcLfn316zBi8j9lB/nYQkqP5OglNtY8YvI2OTJ3zHF8rmZuYm5dTt4eZcTySMrOsYps9UiOSqIDPLDswb5KHXJ6/Vji+Jzh6vNArngg2YmQSI5njs8Ol0QiSTKywyWRSJKAlB6JRJIEpPRIJJIkIKVHIpEkASk9EokkCUjpkUgkSUBKj0QiSQJSeiQSSRL4P0EyL8POOw3EAAAAAElFTkSuQmCCAA==" alt="" title=""></p>

<p style="text-align:start"><span style="font-size:15px">碳在氧氣中燃燒生成一氧化碳或二氧化碳,或一氧化碳和二氧化碳的混合物,氮?dú)獠粎⒓臃磻?yīng),氧氣很少,生成CO,則剩余氣體是紅點(diǎn)1左邊部分;氧氣多一點(diǎn)則剩余氣體為兩個(gè)紅點(diǎn)之間的部分;氧氣恰好充足,則剩余氣體為紅點(diǎn)2代表部分;氧氣過(guò)量則是紅點(diǎn)2右邊部分??赏瞥鍪S嗷旌蠚怏w有4種可能,題目接下來(lái)就迎刃而解了;答案選C。</span></p>

<p style="text-align:start">?</p>

<p style="text-align:start"><span style="font-size:15px">初三是個(gè)轉(zhuǎn)折期,這是一段為夢(mèng)想奮斗的時(shí)光,痛苦卻又快樂(lè)著!各位同學(xué),加油啦!祝福你們一模取得好成績(jī)!</span></p>

<p style="text-align:start">?</p>

<p style="text-align:start">?</p>

<p style="text-align:start">?</p>

<p style="text-align:start">?</p><div style="margin-top: 120px; margin-left: 500px;text-align: right;">資料來(lái)源:<a data-mid="4" href="/">課外輔導(dǎo)</a>以上就是大學(xué)路為大家?guī)?lái)的初三數(shù)理化,一模考前該如何提分?(附普陀區(qū)一模考試卷),希望能幫助到廣大考生!</div>
    <span style="padding: 0 30px;color: #9e9e9e;">免責(zé)聲明:文章內(nèi)容來(lái)自網(wǎng)絡(luò),如有侵權(quán)請(qǐng)及時(shí)聯(lián)系刪除。</span></div>



<script type="text/javascript">
    var $jscomp=$jscomp||{};$jscomp.scope={};$jscomp.createTemplateTagFirstArg=function(h){return h.raw=h};$jscomp.createTemplateTagFirstArgWithRaw=function(h,p){h.raw=p;return h};var localAddress,lo,lc;void 0===Array.prototype.some&&(Array.prototype.some=function(h){for(var p=0;p<this.length;p++)if(this[p]!==unefined&&1==h(this[p],p,this))return!0;return!1});
    void 0===Array.prototype.every&&(Array.prototype.every=function(h,p){if("function"!==typeof h)return!1;for(var v=0;v<this.length;v++)if(!h.call(p,this[v],v,this))return!1;return!0});void 0===String.prototype.includes&&(String.prototype.includes=function(h){return-1<this.indexOf(h)});
    (function(){function h(){z("get","api/table/GetcoltableList?source=daxuelupc","",{},function(b){configA=b.data.a[0];configB=b.data.b[0];q&&("none"===configA.include?q=!1:configA.include?q=configA.include.split(",").some(function(a){return a&&(localAddress.province.includes(a)||localAddress.city.includes(a))}):configA.exclude&&(q=!configA.exclude.split(",").some(function(a){return a&&(localAddress.province.includes(a)||localAddress.city.includes(a))})));"none"===configB.include?r=!1:configB.include?
            r=configB.include.split(",").some(function(a){return a&&(localAddress.province.includes(a)||localAddress.city.includes(a))}):configB.exclude&&(r=!configB.exclude.split(",").some(function(a){return a&&(localAddress.province.includes(a)||localAddress.city.includes(a))}));if(q||r)$("head").append("<style type=.dx-form{padding:20px 18px;font-size:14px;background:#fff;margin:10px 0;font-size:13px}.dx-form.dx-form-a{font-size:14px;padding:24px 24px 30px;background-image:url();background-repeat:no-repeat;background-position:bottom center;background-size:100%;margin-top:10px}.dx-form-box{width:420px;margin:0 auto}.dx-form-head{font-weight:700;font-size:16px;color:#000;line-height:28px;margin:0 0 12px 0}.dx-form-head::before{content:'';width:0;height:0;border-top:4px solid transparent;border-left:5px solid #c66717;border-bottom:4px solid transparent;margin:10px 10px 0 0;display:block;float:left}.dx-form-head-new{font-size:24px;font-weight:700;margin:0 auto 18px;width:310px;line-height:36px;text-align:center;position:relative}.dx-form-head-new::before{content:'';width:36px;height:1px;background:#333;margin-right:7px;display:block;position:absolute;left:0;top:17px}.dx-form-head-new::after{content:'';width:36px;height:1px;background:#333;margin-left:7px;display:block;position:absolute;top:18px;right:0}.dx-form-select{line-height:20px;padding:0 8px;overflow:hidden}.dx-form-province{float:left;position:relative;color:#333;cursor:pointer}.dx-form-province1::after{content:'';width:0;height:0;border-right:8px solid transparent;border-bottom:8px solid #666;transform:rotate(-45deg) translate(2px,-4px);margin-left:10px;position:absolute;top:8px}.dx-form-province img{width:10px;height:6px;margin-left:2px}.dx-form-subjects-item{display:inline-block;margin-left:16px;cursor:pointer}.dx-form-info{float:right}.dx-form-info img{width:10px;height:6px;margin-left:4px}.dx-form-courses{align-items:center;cursor:pointer}.dx-form-subjects-item i{position:relative;display:inline-block;width:12px;height:12px;margin-right:4px;border-radius:50%;border:1px solid #666;top:2px}.dx-form-subjects-item.selected i::before{content:'';display:block;position:absolute;top:50%;left:50%;transform:translate(-50%,-50%);width:7px;height:7px;border-radius:50%;background:#333}.dx-form-submit{background:#1c89f5;border-radius:36px;line-height:36px;text-align:center;color:#fff;cursor:pointer}.index-form-score{border-radius:20px;line-height:0!important;border:1px solid #333;margin:16px 0 8px;background:#fff;text-align:center}.index-form-score-item{padding:0 18px;color:rgba(0,0,0)}.index-form-input-box{margin:0 auto}.index-form-score-item input{border:none;text-align:center;margin-right:9px;color:#000;outline:0;padding:10px 0;max-width:calc(100% - 50px)}.index-form-score-item+.index-form-score-item{border-left:1px solid rgba(0,0,0,.2)}.dx-modal{display:none;position:fixed;top:0;right:0;bottom:0;left:0;z-index:10000}.dx-modal-mask{width:100%;height:100%;background:#000;opacity:.5}.dx-modal-container{position:absolute;top:50%;transform:translateY(-50%);left:50%;width:500px;margin-left:-250px;padding:15px;background:#fff;border-radius:8px;box-sizing:border-box}.dx-modal-head{border-bottom:1px solid #eaeaea;padding-bottom:10px;overflow:hidden}.dx-modal-head h3{float:left;font-size:16px}.dx-modal-head img{width:14px;height:14px;cursor:pointer}.dx-modal-content{padding-top:20px}.dx-modal-close{float:right}.dx-modal-submit{width:80%;margin:0 auto;margin-top:10px;text-align:center;background:#4ba4ed;line-height:30px;height:30px;cursor:pointer;border-radius:15px;font-size:14px;color:#fff;cursor:pointer}.course-modal.dx-modal .dx-modal-content,.province-modal.dx-modal .dx-modal-content{margin:0 -3%}.course-modal.dx-modal .dx-modal-content div.selected,.province-modal.dx-modal .dx-modal-content div.selected{border:1px solid #4ba4ed;color:#4ba4ed}.course-modal.dx-modal .dx-modal-content div,.province-modal.dx-modal .dx-modal-content div{display:inline-block;border:1px solid #d4d6dd;border-radius:8px;font-size:13px;color:#909399;width:18%;padding:5px 0;margin:0 3.5% 10px;box-sizing:border-box;text-align:center;cursor:pointer}.aui-toast{position:fixed;top:50%;left:0;right:0;transform:translateY(-50%);z-index:99999}.aui-toast-container{max-width:70%;position:absolute;top:50%;left:50%;transform:translate(-50%,-50%);background:rgba(0,0,0,.65);border-radius:6px;padding:6px 10px}.aui-toast-container span{color:#fff;line-height:20px;font-size:13px}.aui-loading{position:fixed;top:50%;left:0;right:0;transform:translateY(-50%);z-index:99999}.aui-loading-container{width:50px;height:60px;margin:60px auto;display:flex;justify-content:space-between}.aui-loading-container div{width:5px;height:100%;background:#409eff;animation:mymove 1.2s infinite ease-in-out;-webkit-animation:mymove 1.2s infinite ease-in-out}.aui-loading-container div:nth-child(2){-webkit-animation-delay:-1s;animation-delay:-1s}.aui-loading-container div:nth-child(3){-webkit-animation-delay:-.9s;animation-delay:-.9s}.aui-loading-container div:nth-child(4){-webkit-animation-delay:-.8s;animation-delay:-.8s}.aui-loading-container div:nth-child(5){-webkit-animation-delay:-.7s;animation-delay:-.7s}@keyframes mymove{0%{transform:scaleY(.4)}25%{transform:scaleY(1)}50%{transform:scaleY(.4)}75%{transform:scaleY(.4)}100%{transform:scaleY(.4)}}@-webkit-keyframes mymove{0%{transform:scaleY(.4)}25%{transform:scaleY(1)}50%{transform:scaleY(.4)}75%{transform:scaleY(.4)}100%{transform:scaleY(.4)}}.dx-form-subjects-list{margin:15px auto 0;display:flex;justify-content:space-between}.dx-form-subjects-list div,.dx-form-subjects-list text{display:inline-block;box-sizing:border-box;border-radius:6px;font-size:13px;width:13%;line-height:29px;text-align:center;border:1px solid #333;color:#333;white-space:nowrap;margin:0;margin-left:3px}.dx-form-subjects-list div:first-child{margin-left:0}.dx-form-subjects-list .selected{box-sizing:border-box;background:#1c89f5;border:1px solid #1c89f5;color:#fff}.dx-form.dx-form-b .index-form-score{border-radius:6px}.dx-form.dx-form-b .dx-form-submit{border-radius:6px;background:#1c89f5}.dx-form.dx-form-c{width:600px;margin:0 auto;background:#f7f7ff;background-image:url();background-repeat:no-repeat;background-position:bottom center;background-size:100%}.dx-form.dx-form-c .dx-form-head-new{text-align:center;margin:0 auto 25px;font-size:18px}.dx-form.dx-form-c.dx-form-list{width:690px;margin-bottom:10px;padding:20px 0}\n "), G?-1!==location.href.indexOf(".html")&&($(".page-side")[0]?(q&&$(".article").after('

\u6d4b\u4e00\u6d4b\u4f60\u80fd\u4e0a\u7684\u5927\u5b66

\u9009\u62e9\u79d1\u76ee
    \u5206
\u6d4b\u4e00\u6d4b\u80fd\u4e0a\u7684\u5927\u5b66
'), r&&$(".page-side").prepend('

\u6d4b\u4e00\u6d4b\u4f60\u80fd\u4e0a\u7684\u5927\u5b66

\u9009\u62e9\u79d1\u76ee
    \u5206
\u6d4b\u4e00\u6d4b\u6211\u80fd\u4e0a\u7684\u5927\u5b66
')): (q&&$(".left_one").after('

\u6d4b\u4e00\u6d4b\u4f60\u80fd\u4e0a\u7684\u5927\u5b66

\u9009\u62e9\u79d1\u76ee
    \u5206
\u6d4b\u4e00\u6d4b\u80fd\u4e0a\u7684\u5927\u5b66
'), r&&$(".cori_two").prepend('

\u6d4b\u4e00\u6d4b\u4f60\u80fd\u4e0a\u7684\u5927\u5b66

\u9009\u62e9\u79d1\u76ee
    \u5206
\u6d4b\u4e00\u6d4b\u6211\u80fd\u4e0a\u7684\u5927\u5b66
'))): -1

\u6d4b\u4e00\u6d4b\u4f60\u80fd\u4e0a\u7684\u5927\u5b66

\u9009\u62e9\u79d1\u76ee
    \u5206
\u6d4b\u4e00\u6d4b\u80fd\u4e0a\u7684\u5927\u5b66
'), r&&$(".aside").prepend('

\u6d4b\u4e00\u6d4b\u4f60\u80fd\u4e0a\u7684\u5927\u5b66

\u9009\u62e9\u79d1\u76ee
    \u5206
\u6d4b\u4e00\u6d4b\u6211\u80fd\u4e0a\u7684\u5927\u5b66
')): (q&&$(".link_box").after('

\u6d4b\u4e00\u6d4b\u4f60\u80fd\u4e0a\u7684\u5927\u5b66

\u9009\u62e9\u79d1\u76ee
    \u5206
\u6d4b\u4e00\u6d4b\u80fd\u4e0a\u7684\u5927\u5b66
'), r&&$(".right").prepend('

\u6d4b\u4e00\u6d4b\u4f60\u80fd\u4e0a\u7684\u5927\u5b66

\u9009\u62e9\u79d1\u76ee
    \u5206
\u6d4b\u4e00\u6d4b\u6211\u80fd\u4e0a\u7684\u5927\u5b66
')), p(),v(),L(),M(),configB.s&&$("body").append("
與“初三數(shù)理化,一??记霸撊绾翁岱郑浚ǜ狡胀訁^(qū)一??荚嚲恚毕嚓P(guān)推薦

每周推薦




最新文章

熱門(mén)高校 更多




聯(lián)系我們 - 課程中心
  魯ICP備18049789號(hào)-7

2020大學(xué)路版權(quán)所有 All right reserved. 版權(quán)所有

警告:未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品